School85vrn - Образовательный портал

В эксперименте миллера-юри получены компоненты рнк. История науки: аспирант и пять аминокислот Опыт юри

О том, за что можно не любить эксперименты, о пользе семинаров, благородстве научного руководителя и возникновении живого на фоне холодной войны рассказываем в нашей рубрике «История науки».

Стэнли Миллер родился в 1930 году в семье юриста и школьной учительницы. С детства мальчик любил читать, хорошо учился, любил природу, ходил в походы с бойскаутами. Вслед за братом поступил в Калифорнийский университет так же, как он, изучать химию. С легкостью пройдя университетский курс, он перешел в Чикагский университет, предложивший ему место ассистента (после смерти отца он уже не мог позволить себе просто учиться). Там начались долгие и непростые поиски темы для дальнейшей работы, места, куда приложить свои знания и светлый ум.

Считая эксперименты делом «пустым, затратным по времени и не столь уж важным» (а может быть, просто затратным), Миллер обратился к теоретическим проблемам. Одним из профессоров, чья работа привлекла внимание Миллера, стал Эдвард Теллер, изучавший синтез химических элементов в звездах.

Однако тот Стэнли Миллер, о котором сегодня идет речь, «родился» осенью 1951 года, когда он стал посещать семинары профессора Гарольда Юри, уже на тот момент Нобелевского лауреата (за открытие дейтерия). Юри к тому времени увлекся космохимией, эволюцией химических элементов в звездах и планетах, составил предположение о составе ранней атмосферы Земли. Он полагал, что синтез органических веществ возможен в средах, подобных древней земной атмосфере. Эти идеи увлекли Миллера (настолько, что он помнил подробности лекций и десятилетия спустя), и он перешел со своими исследованиями к Юри.

Гарольд Юри

Wikimedia Commons

Тем самым Миллер занялся проблемой, которой притягивала множество ученых. О том, может ли живое возникнуть из неживого, спорили Уильям Гарвей, Франческо Реди, Луи Пастер, Ладзаро Спалланцани, Якоб Берцелиус, Фридрих Велер (и это даже не все, о ком мы уже писали в «Истории науки»).

Споры не утихли и в XX веке. Здесь большой вклад внес наш соотечественник, Александр Опарин. В 20-х годах он опубликовал статью «О возникновении жизни», в которой изложил свою теорию зарождения живого из «первичного бульона». Опарин предположил, что возникновение органических веществ возможно в зонах повышенной концентрации высокомолекулярных соединений. Когда такие зоны обзаводились оболочкой, частично отделяющей их от окружающей среды, они превращались в коацерватные капли - ключевое понятие теории Опарина - Холдейна (примерно в это же время схожие идеи развивал британский биолог Джон Холдейн). Внутри этих капель могут образовываться простые органические вещества, а вслед за ними и сложные соединения: белки, аминокислоты. Поглощая вещества из внешней среды, капли могут расти и делиться.

Однако вернемся к Миллеру. Его энтузиазм и желание устроить какой-нибудь эксперимент и проверить теорию у Юри поначалу сочувствия не нашли: не стоит аспиранту лезть в неизведанное, лучше, если он займется чем-нибудь попроще. В итоге профессор уступил, но дал Миллеру год. Не будет результатов, тему придется сменить.

Миллер принялся за работу: взял данные Юри о составе ранней атмосферы и предположил, что синтез необходимых для возникновения жизни соединений можно стимулировать электрическим разрядом (считается, что молнии были нередки на Земле и в древности). Установка состояла из двух колб, соединенных стеклянными трубками. В нижней колбе была жидкость, в верхней - смесь газов: метана, аммиака и водорода - и пара. К верхней колбе также были подсоединены электроды, создающие электрический разряд. В разных местах эту систему подогревали и охлаждали, и вещество непрерывно циркулировало.

Эксперимент Миллера - Юри

Wikimedia Commons

Через неделю остановили эксперимент и вынули колбу с охлажденной жидкостью. Миллер обнаружил, что 10-15% углерода перешло в органическую форму. С помощью бумажной хроматографии он заметил следы глицина (они появились уже на второй день эксперимента), альфа- и бета-аминопропионовой кислоты, аспаргиновой и альфа-аминомасляной кислот.

Миллер показал Юри эти скромно звучащие, но так много значащие результаты (они доказывали возможность появления органики в условиях ранней Земли), и ученые, хотя и не без проблем, опубликовали их в журнале Science. В авторах значился лишь Миллер, иначе, опасался Юри, все внимание достанется ему, нобелиату, а не настоящему автору открытия.

Молекулы, необходимые для жизни, могли возникать в ходе химических реакций на заре развития Земли.

4,5 миллиарда лет назад, когда возникла Земля, она представляла собой раскаленный безжизненный шар. Сегодня же на ней в изобилии встречаются разные формы жизни. В связи с этим возникает вопрос: какие изменения происходили на нашей планете с момента ее образования и по сегодняшний день, и главное - как на безжизненной Земле возникли молекулы, образующие живые организмы? В 1953 году в Чикагском университете был поставлен эксперимент, сегодня ставший классическим. Он указал ученым путь к ответу на этот фундаментальный вопрос.

В 1953 году Гарольд Юри был уже Нобелевским лауреатом, а Стэнли Миллер - всего лишь его аспирантом. Идея эксперимента Миллера была простой: в полуподвальной лаборатории он воспроизвел атмосферу древнейшей Земли, какой она была по мнению ученых, и со стороны наблюдал за тем, что происходит. При поддержке Юри он собрал простой аппарат из стеклянной сферической колбы и трубок, в котором испарявшиеся вещества циркулировали по замкнутому контуру, охлаждались и вновь поступали в колбу. Миллер заполнил колбу газами, которые, по мнению Юри и русского биохимика Александра Опарина (1894–1980), присутствовали в атмосфере на заре формирования Земли, - водяным паром, водородом, метаном и аммиаком. Чтобы сымитировать солнечное тепло, Миллер нагревал колбу на бунзеновской горелке, а чтобы получить аналог вспышек молний - вставил в стеклянную трубку два электрода. По его замыслу, материал, испаряясь из колбы, должен был поступать в трубку и подвергаться воздействию электрического искрового разряда. После этого материал должен был охлаждаться и возвращаться в колбу, где весь цикл начинался вновь.

После двух недель работы системы жидкость в колбе стала приобретать темный красно-коричневый оттенок. Миллер провел анализ этой жидкости и обнаружил в ней аминокислоты - основные структурные единицы белков . Так у ученых появилась возможность изучать происхождение жизни с точки зрения основных химических процессов. Начиная с 1953 года с помощью усложненных вариантов эксперимента Миллера-Юри, как стали его с тех пор называть, были получены все виды биологических молекул - включая сложные белки, необходимые для клеточного метаболизма, и жировые молекулы, называемые липидами и образующие мембраны клетки. По-видимому, тот же результат мог бы быть получен и при использовании вместо электрических разрядов других источников энергии - например, тепла и ультрафиолетового излучения. Так что почти не остается сомнений в том, что все компоненты, необходимые для сборки клетки, могли быть получены в химических реакциях, происходивших на Земле в древнейшие времена.

Ценность эксперимента Миллера-Юри состоит в том, что он показал, что вспышки молний в атмосфере древней Земли за несколько сот миллионов лет могли вызвать образование органических молекул, попадавших вместе с дождем в «первичный бульон» (см. также Теория эволюции). Не установленные до сих пор химические реакции, происходящие в этом «бульоне», могли привести к образованию первых живых клеток. В последние годы возникают серьезные вопросы по поводу того, как развивались эти события, в частности подвергается сомнению присутствие аммиака в атмосфере древнейшей Земли. Кроме того, предложено несколько альтернативных сценариев, которые могли привести к образованию первой клетки, начиная от ферментативной активности биохимической молекулы РНК и кончая простыми химическими процессами в океанских глубинах. Некоторые ученые даже предполагают, что происхождение жизни имеет отношение к новой науке о

МОСКВА, 21 янв — РИА Новости. Американские биологи успешно повторили один из самых известных опытов середины 20 века, так называемый эксперимент Миллера-Юри, и успешно воссоздали набор из нескольких первичных аминокислот из простейших неорганических соединений в ходе длительной химической эволюции, говорится в статье, опубликованной в журнале JoVE .

Условия на планетах в ранней Вселенной подходили для зарождения жизни Температура космического микроволнового фона через 15 миллионов лет после Большого взрыва составляла до 30 градусов Цельсия, благодаря чему на планетах, если они существовали в то время, могла быть жидкая вода, необходимая для жизни.

Эрик Паркер из Технологического института Джорджии в Атланте (США) и его коллеги попытались повторить один из ключевых этапов химической эволюции органики на Земле, следуя по стопам двух известных биохимиков мира — Стэнли Миллера и Гарольда Юри.

В середине 50-х годов прошлого века Миллер и Юри экспериментально проверили и подтвердили истинность абиогенетической гипотезы зарождения жизни, основы которой были сформулированы российским биологом Александром Опариным в 1922 году.

Миллер и Юри пытались создать аминокислоты из простейших соединений, таких как вода, аммиак, угарный газ и метан, воссоздав условия, царившие на ранней Земле. Для этого они подогревали "первичный бульон" с этими веществами и пропускали пар через колбу, в которую были вставлены электроды, а затем охлаждали его. Через некоторое время в этом "сиропе" начинали появляться аминокислоты.

Ученые уточнили возможный химический состав первых "кирпичиков жизни" В ходе повторного анализа экспериментов полувековой давности ученые выявили новые формы биологических молекул, которые могли спонтанно образоваться на доисторической Земле и привести к зарождению первых форм жизни.

В последующие годы ученые неоднократно повторяли опыт Миллера-Юри, однако используемые ими процедуры были слишком сложными и запутанными для полноценной проверки их результатов. Авторы статьи изучили описание эксперимента Миллера и Юри, упростили его и подготовили видео, объясняющее как проводить эксперимент.

"Полученные нами результаты показывают, что аминокислоты, "кирпичики жизни", могут формироваться при тех условиях, которые царили на ранней Земле. Миллер не призывал повторять данный эксперимент по той причине, что его экспериментальная установка может взорваться. Если прочитать описание его методики, то станет не совсем понятно, как осуществлялся опыт. Поэтому, мы подготовили безопасную методику проведения эксперимента для заинтересовавшихся коллег", — заключает Паркер.

Происхождение жизни на Земле - одна из самых волнующих загадок современной науки. На вопрос, почему эта жизнь в конце концов зародилась, ответить, судя по всему, предстоит астрофизикам. Рассказать же о процессе природного синтеза первых простейших биогенных молекул способны химики.

Стоит сказать, что гипотезы о первых шагах молекул жизни по Земле появляются регулярно. Одни касаются процессов самоорганизации , другие вовсю эксплуатируют довольно противоречивые природные свидетельства и так далее. Между тем основным оружием ученого со времён Галилея остается эксперимент.

Эксперимент по воссозданию земных условий, приведших к синтезу первых органических молекул, ставших в итоге кирпичиками мироздания, был поставлен ом более полувека назад. О некоторых его результатах мы смогли узнать только сегодня.

Публикация в журнале Science описывает данные, ускользнувшие от ученых 50 с лишним лет назад.

Тогда нобелевский лауреат Гарольд Юри, получивший престижную премию за открытие тяжелой воды и увлекшийся впоследствии проблемами космохимии, вдохновил одного из своих подопечных, Стэнли Миллера, теорией доисторического абиотического супа, из которого под влиянием внешних факторов получились первые органические молекулы.

Молодой сотрудник Университета Чикаго, Стэнли Миллер, проводит свои знаменитые эксперименты по синтезу биологических молекул. 1953 год. //Архив Химического факультета Калифорнийского университета в Сан-Диего

Согласно представлениям того времени, земная атмосфера была сильно отличной от нынешней. Она содержала много метана и аммиака, паров воды и была практически полностью лишена кислорода, что облегчало доступ ультрафиолетового излучения Солнца к поверхности планеты. Кроме того, тогда гораздо ярче проявляла себя вулканическая активность, и грозы, сопровождаемые сильнейшими электрическим разрядами, были нередки. Такие условия как нельзя лучше подходят для многих реакций органического синтеза, что и натолкнуло ученых на мысли о биогенном будущем подобных реакций.

Для того чтобы воссоздать подобные реакции в лаборатории в условиях, приближенных к тем, что царили на Земле миллиарды лет назад, Миллер, работавший тогда в Чикагском университете, разработал оригинальный химический прибор. Он состоит из большой реакционной колбы, содержащей пары метана, аммиака и водорода, в которую снизу нагнетается горячий водяной пар. Сверху же расположены вольфрамовые электроды, генерирующие искровой разряд. Моделируя таким образом условия грозы в окрестностях действующего прибрежного вулкана, Миллер надеялся получить в ходе синтеза биологические молекулы.

После окончания синтеза Миллер сумел обнаружить в реакционной колбе пять аминокислот - основных строительных блоков всех белков: аспарагиновую кислоту, глицин, альфа-аминомасляную кислоту и два оптических изомера аланина.

Два года спустя Миллер повторил свои эксперименты в аппаратах с измененной конфигурацией. Один из них подразумевал использование струйного насоса с соплом, с силой вталкивающим насыщенный водяной пар в реакционную колбу. Таким образом Миллер надеялся сделать условия эксперимента максимально приближенными к условиям извержения подводного вулкана в грозу. Третий же аппарат вместо искрового разряда давал тлеющий. Ученый сумел показать наличие нескольких дополнительных аминокислот в смеси продуктов реакции, а также продемонстрировал наличие нескольких дополнительных карбоновых и гидроксикилот.

Однако в те годы Миллеру приходилось полагаться на очень примитивное по сегодняшним меркам аналитическое оборудование. Потому он с группой коллег повторил свои опыты в 1972 году с использованием оборудования существенно более совершенного. Правда, тогда Миллер провел синтез в приборе, разработанном еще для публикации в 1953 году, сочтя, что аппараты с соплом и тлеющим разрядом особой продуктивностью не отличаются.

Прибор Миллера. Кипящая вода (1) создает поток пара, который усиливатся соплом аспиратора (врезка), искра, проскакивающая между двумя электродами (2), запускает набор химических превращений, холодильник (3) охлаждает поток водяного пара, содержащего продукты реакции, которые оседают в ловушке (4).// Нед Шоу, Университет Индианы.

Стэнли Миллер умер 20 мая 2007 года. Разбирая его дневники и архивы, близкие и коллеги обнаружили записи, относящиеся к работам 50-х годов, а также несколько склянок с подписями.

Подписи указали на то, что содержимое склянок - не что иное, как продукты синтеза в аппаратах Миллера, сохраненные автором в неприкосновенном виде.

Ими заинтересовался Джеффри Бада, выпускник химической школы Миллера, ныне тоже уже старичок, работающий в Институте океанологии при Калифорнийском университете в Сан-Диего.

Согласно записям Миллера, никогда прежде не публиковавшимся, синтез в аппарате с соплом давал несколько больший выход продуктов. Именно эти образцы и заинтересовали Баду и его коллег, авторов свежей публикации, в распоряжении которых оказались самые совершенные инструментальные методы.

Для того чтобы заново изучить состав продуктов синтеза, ученые растворили содержимое склянок в дважды дистиллированной деионизированной воде и провели высокоэффективную жидкостную хроматографию, результаты которой проанализировали на масс-спектрометре с детектором, фиксирующем время полета ионизированных частиц. Такой метод анализа позволяет идентифицировать компоненты смеси даже в субпикомолярной концентрации (менее чем 10 --12 моля на литр).

Оказалось, что смесь продуктов содержала вовсе не пять аминокислот, а двадцать две! Плюс пять молекул аминов, которые Миллер просто не мог идентифицировать полвека назад.

Изучив аналогичным методом остальные склянки, ученые убедились, что в результате этих экспериментов набор продуктов синтеза был менее разнообразен.

Впрочем, сегодня геохимики утверждают, что атмосфера Земли никогда не была такой, какой её считали 50 лет назад. Она была менее основной и менее восстановительной, потому на опыты Миллера нельзя полагаться как на эксперимент, доказывающий теорию абиотического супа. В то же самое время авторы публикации уверены, что если на всей Земле и не существовало подходящих условий, они, несомненно, должны были сопровождать хотя бы точечные извержения вулканов, продолжительность которых миллиарды лет назад позволяла приобщиться к делу синтеза первых органических молекул и грозам. Эти молекулы могли собираться в лагунах вулканических островов, где морской прилив и солнечный ультрафиолет довершали дело конденсации альдегидов, кетонов и других молекул в длинные полимерные цепочки.

Популярность теории древнего абиотического супа в связи с работами Миллера позволила ей попасть даже в школьный курс природоведения, однако современные свидетельства говорят в пользу того, что жизнь изначально зародилась все же не на поверхности планеты. Здешние переменчивые условия были слишком экстремальны даже для того, чтобы жизнь, вопреки всему зародившаяся в маленьких вулканических островах стабильности, распространилась, развилась в современные формы.

Подлинная стабильность в то время существовала только на дне океана, где в зонах срединных океанических хребтов тепло недр Земли неспешно питало базовые химические реакции.

Срединные океанические хребты были открыты практически одновременно с опытами Миллера, а детальное их исследование - это вообще достижения последних десяти-двадцати лет, сделавших доступными исследования морского дна с помощью глубоководных обитаемых аппаратов. Появись такие аппараты раньше лет на тридцать - и теория абиотического супа могла быть и вовсе не выдвинута.

Повторить опыты Миллера в условиях, больше напоминающих современные представления о далёком прошлом Земли, ещё предстоит. И не исключено, что кому-то из нынешних аспирантов химических факультетов суждено стать не менее знаменитым, чем Стэнли Миллеру.

Схема эксперимента.

Эксперимент Миллера - Юри - известный классический эксперимент, в котором симулировались гипотетические условия раннего периода развития Земли для проверки возможности химической эволюции . Фактически это был экспериментальный тест гипотезы, высказанной ранее Александром Опариным и Джоном Холдейном , о том, что условия, существовавшие на примитивной Земле, способствовали химическим реакциям, которые могли привести к синтезу органических молекул из неорганических. Был проведён в 1953 году Стэнли Миллером и Гарольдом Юри . Аппарат, спроектированный для проведения эксперимента, включал смесь газов, соответствующую тогдашним представлениям о составе атмосферы ранней Земли, и пропускавшиеся через неё электрические разряды.

Эксперимент Миллера - Юри считается одним из важнейших опытов в исследовании происхождения жизни на Земле. Первичный анализ показал наличие в конечной смеси 5 аминокислот . Однако, более точный повторный анализ, опубликованный в 2008 году , показал, что эксперимент привёл к образованию 22 аминокислот.

Описание эксперимента

Собранный аппарат представлял собой две колбы, соединённые стеклянными трубками в цикл. Заполнявший систему газ представлял собой смесь из метана (CH 4), аммиака (NH 3), водорода (H 2) и монооксида углерода (CO). Одна колба была наполовину заполнена водой, которая при нагревании испарялась и водные пары попадали в верхнюю колбу, куда с помощью электродов подавались электрические разряды, имитирующие разряды молний на ранней Земле. По охлаждаемой трубке конденсировавшийся пар возвращался в нижнюю колбу, обеспечивая постоянную циркуляцию.

После одной недели непрерывного цикла Миллер и Юри обнаружили, что 10-15 % углерода перешло в органическую форму. Около 2 % углерода оказались в виде аминокислот, причём глицин оказался наиболее распространённой из них. Были также обнаружены сахара , липиды и предшественники нуклеиновых кислот . Эксперимент повторялся несколько раз в 1953-1954 годах. Миллер использовал два варианта аппарата, один из которых, т. н. «вулканический», имел определённое сужение в трубке, что приводило к ускоренному потоку водных паров через разрядную колбу, что, по его мнению, лучше имитировало вулканическую активность. Интересно, что повторный анализ проб Миллера, проведённый через 50 лет профессором и его бывшим сотрудником Джеффри Бейдом (англ. Jeffrey L. Bada ) с использованием современных методов исследования, обнаружил в пробах из «вулканического» аппарата 22 аминокислоты, то есть гораздо больше, чем считалось ранее.

Миллер и Юри основывались в своих экспериментах на представлениях 1950-х годов о возможном составе земной атмосферы. После их экспериментов многие исследователи проводили подобные опыты в различных модификациях. Было показано, что даже небольшие изменения условий процесса и состава газовой смеси (например, добавления азота или кислорода) могли привести к очень существенным изменениям как образующихся органических молекул, так и эффективности самого процесса их синтеза. В настоящее время вопрос о возможном составе первичной земной атмосферы остаётся открытым. Однако, считается, что высокая вулканическая активность того времени способствовала выбросу также таких компонентов как диоксид углерода (CO 2), азот, сероводород (H 2 S), двуокись серы (SO 2).

Критика выводов эксперимента

Выводы о возможности химической эволюции, сделанные на основании данного эксперимента, подвергаются критике. Основным аргументом критиков является отсутствие единой хиральности у синтезированных аминокислот. Действительно, полученные аминокислоты представляли собой практически равную смесь стереоизомеров , в то время как для аминокислот биологического происхождения, в том числе входящих в состав белков, весьма характерно преобладание одного из стереоизомеров. По этой причине дальнейший синтез сложных органических веществ, лежащих в основе жизни, непосредственно из полученной смеси затруднён. По мнению критиков, хотя синтез важнейших органических веществ был явно продемонстрирован, далекоидущий вывод о возможности химической эволюции, сделанный непосредственно из этого опыта, не вполне обоснован.

См. также

Примечания

Литература

  • MILLER SL (May 1953). "A production of amino acids under possible primitive earth conditions ". Science (New York, N.Y.) 117 (3046): 528–9. PMID 13056598 .
  • MILLER SL, UREY HC (July 1959). "Organic compound synthesis on the primitive earth ". Science (New York, N.Y.) 130 (3370): 245–51. PMID 13668555 .
  • Lazcano A, Bada JL (June 2003). "

Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении