School85vrn - Образовательный портал

Статистическое обоснование второго начала термодинамики. Реферат: Статистическая физика и термодинамика Вычисления статистической функции в термодинамике

Статистическая физика и термодинамика

Статистический и термодинамический методы исследования . Молекулярная физика и термодинамика - разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в телах атомов и молекул. Для исследования этих процессов применяют два качественно различных и взаимно допол­няющих друг друга метода: статистический (молекулярно-кинетический ) и термодинами­ческий . Первый лежит в основе молекулярной физики, второй - термодинамики.

Молекулярная физика - раздел физики, изучающий строение и свойства вещества исходя из молекулярно-кинетических представлений, основывающихся на том, что все тела состоят из молекул, находящихся в непрерывном хаотическом движении.

Идея об атомном строении вещества высказана древнегреческим философом Демо­критом (460-370 до н. э.). Атомистика возрождается вновь лишь в XVII в. и развива­ется в работах, взгляды которого на строение вещества и тепловые явления были близки к современным. Строгое развитие молекулярной теории относит­ся к середине XIX в. и связано с работами немецкого физика Р. Клаузиуса (1822-1888), Дж. Максвелла и Л. Больцмана.

Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Законы поведения огромного числа молекул, являясь статистическими закономерностями, изучаются с помощью статистического метода . Этот метод основан на том, что свойства макроскопической системы в конеч­ном счете определяются свойствами частиц системы, особенностями их движения и усредненными значениями динамических характеристик этих частиц (скорости, энер­гии и т. д.). Например, температура тела определяется скоростью хаотического движе­ния его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, то она может быть выражена только через среднее значение скорости движения молекул. Нельзя говорить о температуре одной молекулы. Таким образом, макроскопические характеристики тел имеют физический смысл лишь в слу­чае большого числа молекул.

Термодинамика - раздел физики, изучающий общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехо­да между этими состояниями. Термодинамика не рассматривает микропроцессы, кото­рые лежат в основе этих превращений. Этим термодинамический метод отличается от статистического. Термодинамика базируется на двух началах - фундаментальных за­конах, установленных в результате обобщения опытных данных.

Область применения термодинамики значительно шире, чем молекулярно-кинетической теории, ибо нет таких областей физики и химии, в которых нельзя было бы пользоваться термодинамическим методом. Однако, с другой стороны, термодинами­ческий метод несколько ограничен: термодинамика ничего не говорит о микроскопи­ческом строении вещества, о механизме явлений, а лишь устанавливает связи между макроскопическими свойствами вещества. Молекулярно-кинетическая теория и термо­динамика взаимно дополняют друг друга, образуя единое целое, но отличаясь различ­ными методами исследования.

Основные постулаты молекулярно-кинетической теории (МКТ)

1. Все тела в природе состоят из огромного количества мельчайших частиц (атомов и молекул).

2. Эти частицы находятся в непрерывном хаотическом (беспорядочном) движении.

3. Движение частиц связано с температурой тела, поэтому оно называется тепловым движением .

4. Частицы взаимодействуют друг с другом.

Доказательства справедливости МКТ: диффузия веществ, броуновское движение, теплопроводность.

Физические величины, использующиеся для описания процессов в молекулярной физике делят на два класса:

микропараметры – величины, описывающие поведения отдельных частиц (масса атома (молекулы), скорость, импульс, кинетическая энергия отдельных частиц);
макропараметры – величины, не сводимые к отдельным частицам, но характеризующие свойства вещества в целом. Значения макропараметров определяются результатом одновременного действия огромного количества частиц. Макропараметры – это температура, давление, концентрация и т. п.

Температура - одно из основных понятий, играющих важную роль не только в термодинамике, но и в физике в целом. Температура - физическая величина, харак­теризующая состояние термодинамического равновесия макроскопической системы. В соответствии с решением XI Генеральной конференции по мерам и весам (1960) в настоящее время можно применять только две температурные шкалы - термодина­мическую и Международную практическую , градуированные соответственно в кельвинах (К) и в градусах Цельсия (°С).

В термодинамической шкале температура замерзания воды равна 273,15 К (при том же

давлении, что и в Международной практической шкале), поэтому, по определению, термодинамическая температура и температура по Между­народной практической

шкале связаны соотношением

Т = 273,15 + t .

Температура T = 0 К называется нулем кельвин. Анализ различных процессов показывает, что 0 К недостижим, хотя приближение к нему сколь угодно близко возможно. 0 К – это температура, при которой теоретически должно прекратиться всякое тепловое движение частиц вещества.

В молекулярной физике выводится связь между макропараметрами и микропараметрами. Например, давление идеального газа может быть выражено формулой:

position:relative; top:5.0pt"> - масса одной молекулы, - концентрация, font-size: 10.0pt">Из основного уравнения МКТ можно получить удобное для практического использования уравнение:

font-size: 10.0pt">Идеальный газ – это идеализированная модель газа, в которой считают, что:

1. собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;

2. между молекулами отсутствуют силы взаимодействия (притяжения и отталкивания на расстоянии;

3. столкновения молекул между собой и со стенками сосуда абсолютно упругие.

Идеальный газ – это упрощенная теоретическая модель газа. Но, состояние многих газов при определенных условиях могут быть описаны этим уравнением.

Для описания состояния реальных газов в уравнение состояния необходимо ввести поправки. Наличие сил отталкивания, которые проти­водействуют проникновению в занятый молекулой объем других молекул, сводится к тому, что фактический свободный объем, в котором могут двигаться молекулы реального газа, будет меньше. где b - молярный объем, занимаемый самими молекулами.

Действие сил притяжения газа приводит к появлению дополнительного давления на газ, называемого внутренним давлением. По вычислени­ям Ван-дер-Ваальса, внутреннее давление обратно пропорционально квадрату моляр­ного объема, т. е. где а - постоянная Ван-дер-Ваальса, характеризующая силы межмолекулярного при­тяжения, V m - молярный объем.

В итоге мы получим уравнение состояния реального газа или уравнение Ван-дер-Ваальса :

font-size:10.0pt;font-family:" times new roman> Физический смысл температуры: температура – это мера интенсивности теплового движения частиц веществ. Понятие температуры не применимо к отдельной молекуле. Лишь для достаточно большого количества молекул, создающих некое количество вещества, появляется смысл относить термин температуры.

Для идеального одноатомного газа можно записать уравнение:

font-size:10.0pt;font-family:" times new roman>Первое экспериментальное определение скоростей молекул выпо­лнено немецким физиком О. Штерном (1888-1970). Его опыты позволили также оценить распределение молекул по скоростям.

«Противостояние» между потенциальными энергиями связи молекул и энергиями теплового движения молекул (кинетическими молекулами) приводит к существованию различных агрегатных состояний вещества.

Термодинамика

Подсчитав количество молекул в данной системе и оценив их средние кинетическую и потенциальную энергии, можно оценить внутреннюю энергию данной системы U .

font-size:10.0pt;font-family:" times new roman>Для идеального одноатомного газа .

Внутренняя энергия системы может изменяться в результате различных процессов, например совершения над системой работы или сообщения ей теплоты. Так, вдвигая поршень в цилиндр, в котором находится газ, мы сжимаем этот газ, в результате чего его температура повышается, т. е. тем самым изменяется (увеличивается) внутренняя энергия газа. С другой сторо­ны, температуру газа и его внутреннюю энергию можно увеличить за счет сообщения ему некоторого количества теплоты - энергии, переданной системе внешними телами путем теплообмена (процесс обмена внутренними энергиями при контакте тел с раз­ными температурами).

Таким образом, можно говорить о двух формах передачи энергии от одних тел к другим: работе и теплоте. Энергия механического движения может превращаться в энергию теплового движения, и наоборот. При этих превращениях соблюдается закон сохранения и превращения энергии; применительно к термодинамическим процессам этим законом и является первое начало термодинамики , установленное в результате обобщения многовековых опытных данных:

В замкнутом цикле , поэтому font-size:10.0pt;font-family:" times new roman>КПД теплового двигателя: .

Из первого начала термодинамики следует, что КПД теплового двигателя не может быть больше 100%.

Постулируя существование различных форм энергии и связи между ними первое начало ТД ничего не говорит о направленности процессов в природе. В полном соответствии с первым началом можно мысленно сконструировать двигатель, в котором за счет уменьшения внутренней энергии вещества совершалась бы полезная работа. Например, вместо горючего в тепловом двигателе использовалась бы вода, и за счет охлаждения воды и превращения ее в лед совершалась бы работа. Но подобные самопроизвольные процессы в природе не происходят.

Все процессы в природе можно разделить на обратимые и необратимые.

Одной из основных проблем в классическом естествознании долгое время оставалась проблема объяснения физической природы необратимости реальных процессов. Суть проблемы заключается в том, что движение материальной точки, описываемое II законом Ньютона (F = ma), обратимо, тогда как большое число материальных точек ведет себя необратимо.

Если число исследуемых частиц невелико (например, две частицы на рисунке а)), то мы не сможем определить, куда направлена ось времени: слева направо или справа налево, так как любая последовательность кадров явлется одинаково возможной. Это и есть обратимое явление . Ситуация существенно меняется, если число частиц очень велико (рис. б)). В этом случае направление времени определяется однозначно: слева направо, так как невозможно представить, что равномерно распределенные частицы сами по себе, без каких-то внешних воздействий соберутся в углу «ящика». Такое поведение, когда состояние системы может изменяться только в определенной последовательности, называется необратимым . Все реальные процессы необратимы.

Примеры необратимых процессов: диффузия, теплопроводность, вязкое течение. Почти все реальные процессы в природе являются необратимыми: это и затухание маятника, и эволюция звезды, и человеческая жизнь. Необратимость процессов в природе как бы задает направление на оси времени от прошлого к будущему. Это свойство времени английский физик и астроном А. Эддингтон образно назвал «стрелой времени».

Почему же, несмотря на обратимость поведения одной частицы, ансамбль из большого числа таких частиц ведет себя необратимо? В чем природа необратимости? Как обосновать необратимость реальных процессов, опираясь на законы механики Ньютона? Эти и другие аналогичные вопросы волновали умы самых выдающихся ученых XVIII–XIX вв.

Второе начало термодинамики устанавливает направленность всех процессов в изолированных системах. Хотя общее количество энергии в изолированной системе сохраняется, ее качественный состав меняется необратимо .

1. В формулировке Кельвина второе начало таково: «Невозможен процесс, единственный результат которого состоял бы в поглощении теплоты от нагревателя и полного преобразования этой теплоты в работу».

2. В другой формулировке: «Теплота самопроизвольно может переходить только от более нагретого тела к менее нагретому».

3. Третья формулировка: «Энтропия в замкнутой системе может только увеличиваться».

Второе начало термодинамики запрещает существование вечного двигателя второго рода , т. е. машины, способной совершать работу за счет переноса тепла от холодного тела к горячему. Второй закон термодинамики указывает на существование двух различных форм энергии - теплоты как меры хаотического движения частиц и работы, связанной с упорядоченным движением. Работу всегда можно превратить в эквивалентное ей тепло, но тепло нельзя полностью превратить в работу. Таким образом, неупорядоченную форму энергии нельзя без каких либо дополнительных действий превратить в упорядоченную.

Полное превращение механической работы в теплоту мы делаем каждый раз, нажимая на педаль тормоза в автомобиле. А вот без каких-либо дополнительных действий в замкнутом цикле работы двигателя перевести всю теплоту в работу нельзя. Часть тепловой энергии неизбежно расходуется на нагревание двигателя, плюс движущийся поршень постоянно совершает работу против сил трения (на это тоже расходуется запас механической энергии).

Но смысл второго начала термодинамики оказался еще глубже.

Еще одной формулировкой второго начала термодинамики является следующее утверждение: энтропия замкнутой системы является неубывающей функцией, то есть при любом реальном процессе она либо возрастает, либо остается неизменной.

Понятие энтропии, введенное в термодинамику Р. Клаузиусом, носило первоначально искусственный характер. Выдающийся французский ученый А. Пуанкаре писал по этому поводу: «Энтропия представляется несколько таинственной в том смысле, что величина эта недоступна ни одному из наших чувств, хотя и обладает действительным свойством физических величин, так как, по крайней мере в принципе, вполне поддается измерению».

По определению Клаузиуса, энтропией называется такая физическая величина, приращение которой равно количеству тепла , полученному системой, деленному на абсолютную температуру:

font-size:10.0pt;font-family:" times new roman>В соответствии со вторым законом термодинамики в изолированных системах, т. е. системах, не обменивающихся с окружающей средой энергией, неупорядоченное состояние (хаос) не может самостоятельно перейти в порядок. Таким образом, в изолированных системах энтропия может только расти. Эта закономерность получила название принципа возрастания энтропии . Согласно этому принципу, любая система стремится к состоянию термодинамического равновесия, которое отождествляется с хаосом. Поскольку увеличение энтропии характеризует изменения во времени замкнутых систем, то энтропия выступает в качестве своеобразной стрелы времени .

Состояние с максимальной энтропией мы назвали неупорядоченным, а с малой энтропией - упорядоченным. Статистическая система, если она предоставлена самой себе, переходит из упорядоченного в неупорядоченное состояние с максимальной энтропией, соответствующей данным внешним и внутренним параметрам (давление, объем, температура, число частиц и т. д.).

Людвиг Больцман связал понятие энтропии с понятием термодинамической вероятности: font-size:10.0pt;font-family:" times new roman> Таким образом, любая изолированная система, предоставленная сама себе, с течением времени переходит от состояния упорядоченности в состояние максимального беспорядка (хаоса).

Из этого принципа вытекает пессимистическая гипотеза о тепловой смерти Вселенной, сформулированная Р. Клаузиусом и У. Кельвином, в соответствии с которой:

· энергия Вселенной всегда постоянна;

· энтропия Вселенной всегда возрастает.

Таким образом, все процессы во Вселенной направлены в сторону достижения состояния термодинамического равновесия, соответствующему состоянию наибольшего хаоса и дезорганизации . Все виды энергии деградируют, превратившись в тепло, и звезды закончат свое существование, отдав энергию в окружающее пространство. Установится постоянная температура лишь на насколько градусов выше абсолютного нуля. В этом пространстве будут разбросаны безжизненные, остывшие планеты и звезды. Не будет ничего - ни источников энергии, ни жизни.

Такая мрачная перспектива предсказывалась физикой вплоть до 60-х годов ХХ столетия, хотя выводы термодинамики противоречили результатам исследований в биологии и социальных науках. Так, эволюционная теория Дарвина свидетельствовала, что живая природа развивается преимущественно в направлении усовершенствования и усложнения новых видов растений и животных. История, социология, экономика, другие социальные и гуманитарные науки так же показывали, что в обществе, несмотря на отдельные зигзаги развития, в целом наблюдается прогресс.

Опыт и практическая деятельность свидетельствовали, что понятие закрытой или изолированной системы является достаточно грубой абстракцией , упрощающей действительность, поскольку в природе трудно найти системы, не взаимодействующие с окружающей средой. Противоречие стало разрешаться, когда в термодинамике вместо понятия закрытой изолированной системы ввели фундаментальное понятие открытой системы, т. е. системы, обменивающейся с окружающей средой веществом, энергией и информацией.

СТАТИСТИЧЕСКАЯ ТЕРМОДИНАМИКА,

раздел стати-стич. физики, посвященный обоснованию законов термодинамики на основе законов взаимод. и движения составляющих систему частиц. Для систем в равновесном состоянии С. т. позволяет вычислять , записывать уравнения состояния, условия фазовых и хим. равновесий. Неравновесная С. т. дает обоснование соотношений термодинамики необратимых процессов (ур-ний переноса энергии, импульса, массы и их граничных условий) и позволяет вычислять входящие в ур-ния переноса кинетич. коэффициенты. С. т. устанавливает количеств. связь между микро- и макросвойствами физ. и хим. систем. Расчетные методы С. т. используются во всех направлениях совр. теоретич. химии.

Основные понятия. Для статистич. описания макроскопич. систем Дж. Гиббсом (1901) предложено использовать понятия статистич. ансамбля и фазового пространства, что позволяет применять к решению задач методы теории вероятности. Статистич. ансамбль-совокупность очень большого числа одинаковых систем мн. частиц (т. е. "копий" рассматриваемой системы), находящихся в одном и том же макросостоянии, к-рое определяется параметрами состояния; микросостояния системы при этом могут различаться. Осн. статистич. ансамбли-микроканонич., канонич., большой канонич. и изобарно-изотермический.

Микроканонич. ансамбль Гиббса используетя при рассмотрении изолированных систем (не обменивающихся энергией Eс окружающей средой), имеющих постоянный объем V и число одинаковых частиц N (Е, V и N- параметры состояния системы). Канонич. ансамбль Гиббса используется для описания систем постоянного объема, находящихся в тепловом равновесии с окружающей средой (абс. т-ра Т) при постоянном числе частиц N(параметры состояния V, Т, N ).Большой канонич. ансамбль Гиббса используется для описания открытых систем, находящихся в тепловом равновесии с окружающей средой (т-ра Т) и материальном равновесии с резервуаром частиц (осуществляется обмен частицами всех сортов через "стенки", окружающие систему объемом V).Параметры состояния такой системы-V, Ти mЧ химический потенциал частиц. Изобарно-изотермич. ансамбль Гиббса используется для описания систем, находящихся в тепловом и мех. равновесии с окружающей средой при постоянном давлении P(параметры состояния Т, P, N ).

Фазовое пространство в статистич. механике-многомерное пространство, осями к-рого служат все обобщенные координаты i и сопряженные им импульсы

(i =1,2,..., М) системы с Мстепенями свободы. Для системы, состоящей из Nатомов, i и

соответствуют декартовой координате и компоненте импульса (a = х, у, z ) нек-рого атома jи М = 3N. Совокупность координат и импульсов обозначаются qи pсоответственно. Состояние системы изображается точкой в фазовом пространстве размерности 2М, а изменение состояния системы во времени-движением точки вдоль линии, наз. фазовой траекторией. Для статистич. описания состояния системы вводятся понятия фазового объема (элемента объема фазового пространства) и ф-ции распределения f(p, q ),к-рая характеризует плотность вероятности нахождения точки, изображающей состояние системы, в элементе фазового пространства вблизи точки с координатами р, q. В квантовой механике вместо фазового объема используют понятие дискретного энергетич. спектра системы конечного объема, т. к. состояние отдельной частицы определяется не импульсом и координатами, а волновой ф-цией, к-рой в стационарном динамич. состоянии системы соответствует энергетич. спектр квантовых состояний.

Функция распределения классич. системы f(p, q)характеризует плотность вероятности реализации данного микросостояния ( р, q ) в элементе объема dГ фазового пространства. Вероятность пребывания Nчастиц в бесконечно малом объеме фазового пространства равна:

где dГ N -> элемент фазового объема системы в единицах h 3N , h -постоянная Планка; делитель N! учитывает тот факт, что перестановка тождеств. частиц не меняет состояния системы. Ф-ция распределения удовлетворяет условию нормировки тf(p, q )dГ N => 1, т. к. система достоверно находится в к.-л. состоянии. Для квантовых систем ф-ция распределения определяет вероятность w i , нахождения системы из Nчастиц в квантовом состоянии, задаваемом набором квантовых чисел i, с энергией при условии нормировки

Среднее значение в момент времени т (т. е. по бесконечно малому интервалу времени от т до т + )любой физ. величины А( р, q ), являющейся ф-цией координат и импульсов всех частиц системы, с помощью ф-ции распределения вычисляется по правилу (в т. ч. и для неравновесных процессов):

Интегрирование по координатам проводится по всему объему системы, а интегрирование по импульсам от Ч, до +,. Состояние термодинамич. равновесия системы следует рассматривать как предел т:,. Для равновесных состояний ф-ции распределения определяются без решения ур-ния движения составляющих систему частиц. Вид этих ф-ций (одинаковый для классич. и квантовых систем) был установлен Дж. Гиббсом (1901).

В микроканонич. ансамбле Гиббса все микросостояния с данной энергией Еравновероятны и ф-ция распределения для классич. систем имеет вид:

f(p,q ) = A d,

где d-дельта-ф-ция Дирака, Н( р,q )-ф-ция Гамильтона, представляющая собой сумму кинетич. и потенц. энергий всех частиц; постоянная Аопределяется из условия нормировки ф-ции f(p, q ).Для квантовых систем при точности задания квантового состояния, равной величине DE, в соответствии с соотношением неопределенностей между энергией и временем (между импульсом и координатой частицы), ф-ция w() = -1 , если Е E + DE, и w() = 0, если и DE. Величина g(E, N, V )-т. наз. статистич. вес, равный числу квантовых состояний в энергетич. слое DE. Важное соотношение С. т.-связь энтропии системы со статистич. весом:

S(E, N, V ) = k lng(E, N, V ),где k-Больцмана постоянная.

В канонич. ансамбле Гиббса вероятность нахождения системы в микросостоянии, определяемом координатами и импульсами всех Nчастиц или значениями , имеет вид: f(p, q ) = exp {/kT }; w i,N = exp[(F - E i,N )/kT ], где F-своб. энергия (энергия Гельмгольца), зависящая от значений V, Т, N:

F = -kT ln

где статистич. сумма (в случае квантовой системы) или статистич. интеграл (в случае классич. системы), определяемые из условия нормировки ф-ций w i,N > или f(p, q ):


Z N = тexp[-H(р, q)/kT ]dpdq /()

(сумма по г берется по всем квантовым состояниям системы, а интегрирование проводится по всему фазовому пространству).

В большом канонич. ансамбле Гиббса ф-ция распределения f(p, q ) и статистич. сумма X, определяемая из условия нормировки, имеют вид:

где W-термодинамич. потенциал, зависящий от переменных V, Т, m (суммирование ведется по всем целым положит. N).В изобарно-изотермич. ансамбле Гиббса ф-ция распределения и статистич. сумма Q, определяемая из условия нормировки, имеют вид:

где G- энергия Гиббса системы (изобарно-изотермич. потенциал, своб. энтальпия).

Для вычисления термодинамич. ф-ции можно использовать любое распределение: они эквивалентны друг другу и соответствуют разным физ. условиям. Микроканонич. распределение Гиббса применяется гл. обр. в теоретич. исследованиях. Для решения конкретных задач рассматривают ансамбли, в к-рых есть обмен энергией со средой (канонич. и изобарно-изотермич.) или обмен энергией и частицами (большой канонич. ансамбль). Последний особенно удобен для изучения фазового и хим. равновесий. Статистич. суммы и Qпозволяют определить энергию Гельмгольца F, энергию Гиббса G, а также термодинамич. св-ва системы, получаемые дифференцированием статистич. суммы по соответствующим параметрам (в расчете на 1 моль в-ва): внутр. энергию U = RT 2 (9ln ) V , > энтальпию H = RT 2 (9ln , энтропию S = Rln + RT (9ln /9T) V = = Rln Q + RT (9ln , теплоемкость при постоянном объеме С V = 2RT (9ln 2 (ln /9T 2) V , > теплоемкость при постоянном давлении С Р => 2RT (9ln 2 (9 2 ln /9T 2) P > и т. д. Соотв. все эти величины приобретают и статистич. смысл. Так, внутренняя энергия отождествляется со средней энергией системы, что позволяет рассматривать первое начало термодинамики как закон сохранения энергии при движении составляющих систему частиц; своб. энергия связана со статистич. суммой системы, энтропия-с числом микросостояний gв данном макросостоянии, или статистич. весом макросостояния, и, следовательно, с его вероятностью. Смысл энтропии как меры вероятности состояния сохраняется по отношению к произвольным (неравновесным) состояниям. В состоянии равновесия изолир. системы имеет максимально возможное значение при заданных внеш. условиях ( Е, V, N), т. е. равновесное состояние является наиб. вероятным состоянием (с макс. статистич. весом). Поэтому переход из неравновесного состояния в равновесное есть процесс перехода из менее вероятных состояний в более вероятное. В этом заключается статистич. смысл закона возрастания энтропии, согласно к-рому энтропия замкнутой системы может только увеличиваться (см. Второе начало термодинамики). При т-ре абс. нуля любая система находится в осн. состоянии, в к-ром w 0 = 1 и S = 0. Это утверждение представляет собой (см. Тепловая теорема ).Существенно, что для однозначного определения энтропии нужно пользоваться квантовым описанием, т. к. в классич. статистике энтропия м. б. определена только с точностью до произвольного слагаемого.

Идеальные системы. Расчет статистич. сумм большинства систем представляет сложную задачу. Она существенно упрощается в случае газов, если вкладом потенц. энергии в полную энергию системы можно пренебречь. В этом случае полная ф-ция распределения f(p, q ) для Nчастиц идеальной системы выражается через произведение одно-частичных ф-ций распределения f 1 (p, q):


Распределение частиц по микросостояниям зависит от их кинетич. энергии и от квантовых св-в системы, обусловленных тождественностью частиц. В квантовой механике все частицы разделяются на два класса: фермионы и бозоны. Тип статистики, к-рой подчиняются частицы, однозначно связан с их спином.

Статистика Ферми-Дирака описывает распределение в системе тождеств. частиц с полуцелым спином 1 / 2 , 3 / 2 ,... в единицах Р= h/2p. Частица (или квазичастица), подчиняющаяся указанной статистике, наз. фермионом. К фер-мионам относятся электроны в атомах, металлах и полупроводниках, атомные ядра с нечетным атомным номером, атомы с нечетной разностью атомного номера и числа электронов, квазичастицы (напр., электроны и дырки в твердых телах) и т. д. Данная статистика была предложена Э. Ферми в 1926; в том же году П. Дирак выяснил ее квантовомех. смысл. Волновая ф-ция системы фермионов антисимметрична, т. е. меняет свой знак при перестановке координат и спинов любой пары тождеств. частиц. В каждом квантовом состоянии может находиться не более одной частицы (см. Паули принцип ). Среднее число частиц идеального газа фермионов, находящихся в состоянии с энергией , определяется ф-цией распределения Ферми-Дирака:

={1+exp[( -m)/kT ]} -1 ,

где i-набор квантовых чисел, характеризующих состояние частицы.

Статистика Бозе-Эйнштейна описывает системы тождеств. частиц с нулевым или целочисленным спином (0, Р, 2Р, ...). Частица или квазичастица, подчиняющаяся указанной статистике, наз. бозоном. Данная статистика была предложена Ш. Бозе (1924) для фотонов и развита А. Эйнштейном (1924) применительно к молекулам идеального газа, рассматриваемым как составные частицы из четного числа фермионов, напр. атомные ядра с четным суммарным числом протонов и нейтронов (дейтрон, ядро 4 Не и т. д.). К бозонам относятся также фононы в твердом теле и жидком 4 Не, экситоны в полупроводниках и диэлектриках. Волновая ф-ция системы симметрична относительно перестановки любой пары тождеств. частиц. Числа заполнения квантовых состояний ничем не ограничены, т. е. в одном состоянии может находиться любое число частиц. Среднее число частиц идеального газа бозонов, находящихся в состоянии с энергией Е i описывается ф-цией распределения Бозе-Эйнштейна:

={exp[( -m)/kT ]-1} -1 .

Статистика Больцмана представляет собой частный случай квантовой статистики, когда можно пренебречь квантовыми эффектами (высокие т-ры). В ней рассматривается распределение частиц идеального газа по импульсам и координатам в фазовом пространстве одной частицы, а не в фазовом пространстве всех частиц, как в распределениях Гиббса. В качестве миним. единицы объема фазового пространства, имеющего шесть измерений (три координаты и три проекции импульса частицы), в соответствии с квантовомех. соотношением неопределенностей, нельзя выбрать объем меньший, чем h 3 . Среднее число частиц идеального газа, находящихся в состоянии с энергией описывается ф-цией распределения Больцмана:

=exp[(m)/kT ].

Для частиц, к-рые движутся по законам классич. механики во внеш. потенц. поле U(r), статистически равновесная ф-ция распределения f 1 (p,r) по импульсам pи координатам r частиц идеального газа имеет вид: f 1 (p,r) = Aехр{ - [р 2 /2m + U(r)]/kT }. Здесь р 2 /2т-кинетич. энергия молекул массой ш, постоянная Аопределяется из условия нормировки. Данное выражение часто наз. распределением Максвелла-Больцмана, а распределением Больцмана наз. ф-цию

n(r) = n 0 ехр[-U(r)]/kT ],

где n(r) = т f 1 (p, r)dp - плотность числа частиц в точке r(n 0 -плотность числа частиц в отсутствие внеш. поля). Распределение Больцмана описывает распределение молекул в поле тяготения (барометрич. ф-ла), молекул и высокодисперсных частиц в поле центробежных сил, электронов в невырожденных полупроводниках, а также используется для расчета распределения ионов в разбавл. р-рах электролитов (в объеме и на границе с электродом) и т. п. При U(r) = 0 из распределения Максвелла - Больц-мана следует распределение Максвелла, описывающее распределение по скоростям частиц, находящихся в ста-тистич. равновесии (Дж. Максвелл, 1859). Согласно этому распределению, вероятное число молекул в единице объема компоненты скоростей к-рых лежат в интервалах от до + (i= x, у, z ),определяется ф-цией:

Распределение Максвелла не зависит от взаимод. между Частицами и справедливо не только для газов, но и для жидкостей (если для них возможно классич. описание), а также для броуновских частиц, взвешенных в жидкости и газе. Его используют для подсчета числа столкновений молекул газа между собой в ходе хим. р-ции и с атомами пов-сти.

Сумма по состояниям молекулы. Статистич. сумма идеального газа в канонич. ансамбле Гиббса выражается через сумму по состояниям одной молекулы Q 1:

где Е i - > энергияi-го квантового уровня молекулы (i = О соответствует нулевому уровню молекулы), i -статистич. вес i-го уровня. В общем случае отдельные виды движения электронов, атомов и групп атомов в молекуле, а также движение молекулы как целого взаимосвязаны, однако приближенно их можно рассматривать как независимые. Тогда сумма по состояниям молекулы м. б. представлена в виде произведения отдельных составляющих, связанных с по-ступат. движением (Q пост) и с внутримол. движениями (Q вн):

Q 1 = Q пост

Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "СТАТИСТИЧЕСКАЯ ТЕРМОДИНАМИКА" в других словарях:

    - (равновесная статистическая термодинамика) раздел статистической физики, посвящённый обоснованию законов термодинамики равновесных процессов (на основе статистич. механикиДж. У. Гиббса, J. W. Gibbs) и вычислениям термодинамич. характеристик физ … Физическая энциклопедия

    Раздел статистической физики, посвященный теоретическому определению термодинамических свойств веществ (уравнений состояния, термодинамических потенциалов и др.) на основе данных о строении веществ … Большой Энциклопедический словарь

    Раздел статистической физики, посвященный теоретическому определению термодинамических характеристик физических систем (уравнений состояния, термодинамических потенциалов и др.) на основе законов движения и взаимодействия частиц, составляющих эти … Энциклопедический словарь

    статистическая термодинамика - statistinė termodinamika statusas T sritis chemija apibrėžtis Termodinamika, daugiadalelėms sistemoms naudojanti statistinės mechanikos principus. atitikmenys: angl. statistical thermodynamics rus. статистическая термодинамика … Chemijos terminų aiškinamasis žodynas

    статистическая термодинамика - statistinė termodinamika statusas T sritis fizika atitikmenys: angl. statistical thermodynamics vok. statistische Thermodynamik, f rus. статистическая термодинамика, f pranc. thermodynamique statistique, f … Fizikos terminų žodynas

10. Основные постулаты статистической термодинамики

При описании систем, состоящих из большого числа частиц, можно использовать два подхода: микроскопический и макроскопический. В первом подходе, основанном на классической или квантовой механике, подробно характеризуется микросостояние системы, например, координаты и импульсы каждой частицы в каждый момент времени. Микроскопическое описание требует решения классических или квантовых уравнений движения для огромного числа переменных. Так, каждое микросостояние идеального газа в классической механике описывается 6N переменными (N - число частиц): 3N координат и 3N проекций импульса.

Макроскопический подход, который использует классическая термодинамика, характеризует только макросостояния системы и использует для этого небольшое число переменных, например, три: температуру, объем и число частиц. Если система находится в равновесном состоянии, то ее макроскопические параметры постоянны, тогда как микроскопические параметры изменяются со временем. Это означает, что каждому макросостоянию соответствует несколько (на самом деле, бесконечно много) микросостояний.

Статистическая термодинамика устанавливает связь между этими двумя подходами. Основная идея заключается в следующем: если каждому макросостоянию соответствует много микросостояний, то каждое из них вносит в макросостояние свой вклад. Тогда свойства макросостояния можно рассчитать как среднее по всем микросостояниям, т.е. суммируя их вклады с учетом статистического веса.

Усреднение по микросостояниям проводят с использованием понятия статистического ансамбля. Ансамбль - это бесконечный набор идентичных систем, находящихся во всех возможных микросостояниях, соответствующих одному макросостоянию. Каждая система ансамбля - это одно микросостояние. Весь ансамбль описывается некоторой функцией распределения по координатам и импульсам (p , q , t ), которая определяется следующим образом:

(p , q , t ) dp dq - это вероятность того, что система ансамбля находится в элементе объема dp dq вблизи точки (p , q ) в момент времени t .

Смысл функции распределения состоит в том, что она определяет статистический вес каждого микросостояния в макросостоянии.

Из определения следуют элементарные свойства функции распределения:

1. Нормировка

. (10.1)

2. Положительная определенность

(p , q , t ) і 0 (10.2)

Многие макроскопические свойства системы можно определить как среднее значение функций координат и импульсов f (p , q ) по ансамблю :

Например, внутренняя энергия - это среднее значение функции Гамильтона H (p ,q ):

Существование функции распределения составляет суть основного постулата классической статистической механики :

Макроскопическое состояние системы полностью задается некоторой функцией распределения, которая удовлетворяет условиям (10.1) и (10.2).

Для равновесных систем и равновесных ансамблей функция распределения не зависит явно от времени: = (p ,q ). Явный вид функции распределения зависит от типа ансамбля. Различают три основных типа ансамблей:

1) Микроканонический ансамбль описывает изолированные системы и характеризуется переменными: E (энергия), V (объем), N (число частиц). В изолированной системе все микросостояния равновероятны (постулат равной априорной вероятности ):

2) Канонический ансамбль описывает системы, находящиеся в тепловом равновесии с окружающей средой. Тепловое равновесие характеризуется температурой T . Поэтому функция распределения также зависит от температуры:

(10.6)

(k = 1.38 10 -23 Дж/К - постоянная Больцмана). Значение константы в (10.6) определяется условием нормировки (см. (11.2)).

Частным случаем канонического распределения (10.6) является распределение Максвелла по скоростям v, которое справедливо для газов:

(10.7)

(m - масса молекулы газа). Выражение (v)d v описывает вероятность того, что молекула имеет абсолютное значение скорости в интервале от v до v + d v. Максимум функции (10.7) дает наиболее вероятную скорость молекул, а интеграл

Среднюю скорость молекул.

Если система имеет дискретные уровни энергии и описывается квантовомеханически, то вместо функции Гамильтона H (p ,q ) используют оператор Гамильтона H , а вместо функции распределения - оператор матрицы плотности :

(10.9)

Диагональные элементы матрицы плотности дают вероятность того, что система находится в i -ом энергетическом состоянии и имеет энергию E i :

(10.10)

Значение константы определяется условием нормировки: S i = 1:

(10.11)

Знаменатель этого выражения называют суммой по состояниям (см. гл. 11). Он имеет ключевое значение для статистической оценки термодинамических свойств системы Из (10.10) и (10.11) можно найти число частиц N i , имеющих энергию E i :

(10.12)

(N - общее число частиц). Распределение частиц (10.12) по уровням энергии называют распределением Больцмана , а числитель этого распределения - больцмановским фактором (множителем). Иногда это распределение записывают в другом виде: если существует несколько уровней с одинаковой энергией E i , то их объединяют в одну группу путем суммирования больцмановских множителей:

(10.13)

(g i - число уровней с энергией E i , или статистический вес).

Многие макроскопические параметры термодинамической системы можно вычислить с помощью распределения Больцмана. Например, средняя энергия определяется как среднее по уровням энергии с учетом их статистических весов:

, (10.14)

3) Большой канонический ансамбль описывает открытые системы, находящиеся в тепловом равновесии и способные обмениваться веществом с окружающей средой. Тепловое равновесие характеризуется температурой T , а равновесие по числу частиц - химическим потенциалом . Поэтому функция распределения зависит от температуры и химического потенциала. Явное выражение для функции распределения большого канонического ансамбля мы здесь использовать не будем.

В статистической теории доказывается, что для систем с большим числом частиц (~ 10 23) все три типа ансамблей эквивалентны друг другу. Использование любого ансамбля приводит к одним и тем же термодинамическим свойствам, поэтому выбор того или иного ансамбля описания термодинамической системы диктуется только удобством математической обработки функций распределения.

ПРИМЕРЫ

Пример 10-1. Молекула может находиться на двух уровнях с энергиями 0 и 300 см -1 . Какова вероятность того, что молекула будет находиться на верхнем уровне при 250 о С?

Решение . Надо применить распределение Больцмана, причем для перевода спектроскопической единицы энергии см -1 в джоули используют множитель hc (h = 6.63 10 -34 Дж. c, c = 3 10 10 см/с): 300 см -1 = 300 6.63 10 -34 3 10 10 = 5.97 10 -21 Дж.

Ответ . 0.304.

Пример 10-2. Молекула может находиться на уровне с энергией 0 или на одном из трех уровней с энергией E . При какой температуре а) все молекулы будут находиться на нижнем уровне, б) число молекул на нижнем уровне будет равно числу молекул на верхних уровнях, в) число молекул на нижнем уровне будет в три раза меньше, чем число молекул на верхних уровнях?

Решение . Воспользуемся распределением Больцмана (10.13):

а) N 0 / N = 1; exp(-E /kT ) = 0; T = 0. При понижении температуры молекулы накапливаются на нижних уровнях.

б) N 0 / N = 1/2; exp(-E /kT ) = 1/3; T = E / [k ln(3)].

в) N 0 / N = 1/4; exp(-E /kT ) = 1; T = . При высоких температурах молекулы равномерно распределены по уровням энергии, т.к. все больцмановские множители почти одинаковы и равны 1.

Ответ . а) T = 0; б) T = E / [k ln(3)]; в) T = .

Пример 10-3. При нагревании любой термодинамической системы заселенность одних уровней увеличивается, а других уменьшается. Используя закон распределения Больцмана, определите, какова должна быть энергия уровня для того, чтобы его заселенность увеличивалась с ростом температуры.

Решение . Заселенность - доля молекул, находящихся на определенном энергетическом уровне. По условию, производная от этой величины по температуре должна быть положительна:

Во второй строчке мы использовали определение средней энергии (10.14). Таким образом, заселенность возрастает с ростом температуры для всех уровней, превышающих среднюю энергию системы.

Ответ . .

ЗАДАЧИ

10-1. Молекула может находиться на двух уровнях с энергиями 0 и 100 см -1 . Какова вероятность того, что молекула будет находиться на низшем уровне при 25 о С?

10-2. Молекула может находиться на двух уровнях с энергиями 0 и 600 см -1 . При какой температуре на верхнем уровне будет в два раза меньше молекул, чем на нижнем?

10-3. Молекула может находиться на уровне с энергией 0 или на одном из трех уровней с энергией E . Найдите среднюю энергию молекул: а) при очень низких температурах, б) при очень высоких температурах.

10-4. При охлаждении любой термодинамической системы заселенность одних уровней увеличивается, а других уменьшается. Используя закон распределения Больцмана, определите, какова должна быть энергия уровня для того, чтобы его заселенность увеличивалась с уменьшением температуры.

10-5. Рассчитайте наиболее вероятную скорость молекул углекислого газа при температуре 300 К.

10-6. Рассчитайте среднюю скорость атомов гелия при нормальных условиях.

10-7. Рассчитайте наиболее вероятную скорость молекул озона при температуре -30 о С.

10-8. При какой температуре средняя скорость молекул кислорода равна 500 м/с?

10-9. При некоторых условиях средняя скорость молекул кислорода равна 400 м/с. Чему равна средняя скорость молекул водорода при этих же условиях?

10-10. Какова доля молекул массой m , имеющих скорость выше средней при температуре T ? Зависит ли эта доля от массы молекул и температуры?

10-11. Пользуясь распределением Максвелла, рассчитайте среднюю кинетическую энергию движения молекул массой m при температуре T . Равна ли эта энергия кинетической энергии при средней скорости?

СТАТИСТИЧЕСКАЯ ТЕРМОДИНАМИКА , раздел стати-стич. физики, посвященный обоснованию законов термодинамики на основе законов взаимод. и движения составляющих систему частиц. Для систем в равновесном состоянии статистическая термодинамика позволяет вычислять термодинамические потенциалы , записывать уравнения состояния , условия фазовых и хим. равновесий . Неравновесная статистическая термодинамика дает обоснование соотношений (ур-ний переноса энергии, импульса, массы и их граничных условий) и позволяет вычислять входящие в ур-ния переноса кинетич. коэффициенты. Статистическая термодинамика устанавливает количеств. связь между микро- и макросвойствами физ. и хим. систем. Расчетные методы статистической термодинамики используются во всех направлениях совр. теоретич. химии .

Основные понятия. Для статистич. описания макроскопич. систем Дж. Гиббсом (1901) предложено использовать понятия статистич. ансамбля и фазового пространства, что позволяет применять к решению задач методы теории вероятности. Статистич. ансамбль-совокупность очень большого числа одинаковых систем мн. частиц (т. е. "копий" рассматриваемой системы), находящихся в одном и том же макросостоянии, к-рое определяется параметрами состояния ; микросостояния системы при этом могут различаться. Осн. статистич. ансамбли-микроканонич., канонич., большой канонич. и изобарно-изотермический.

Микроканонич. ансамбль Гиббса используетя при рассмотрении изолированных систем (не обменивающихся энергией E с окружающей средой), имеющих постоянный объем V и число одинаковых частиц N (Е, V и N- параметры состояния системы). Канонич. ансамбль Гиббса используется для описания систем постоянного объема, находящихся в тепловом равновесии с окружающей средой (абс. т-ра Т) при постоянном числе частиц N (параметры состояния V, Т, N ). Большой канонич. ансамбль Гиббса используется для описания открытых систем , находящихся в тепловом равновесии с окружающей средой (т-ра Т) и материальном равновесии с резервуаром частиц (осуществляется обмен частицами всех сортов через "стенки", окружающие систему объемом V). Параметры состояния такой системы-V, Т и m -химический потенциал частиц. Изобарно-изотермич. ансамбль Гиббса используется для описания систем, находящихся в тепловом и мех. равновесии с окружающей средой при постоянном давлении P (параметры состояния Т, P, N ).

Фазовое пространство в статистич. механике-многомерное пространство, осями к-рого служат все обобщенные координаты q i и сопряженные им импульсы p i (i =1,2,..., М) системы с М степенями свободы. Для системы, состоящей из N атомов , q i и p i соответствуют декартовой координатеи компоненте импульса (a = х, у, z) нек-рого атома j и М = 3N . Совокупность координат и импульсов обозначаются q и p соответственно. Состояние системы изображается точкой в фазовом пространстве размерности 2М, а изменение состояния системы во времени-движением точки вдоль линии, наз. фазовой траекторией. Для статистич. описания состояния системы вводятся понятия фазового объема (элемента объема фазового пространства) и ф-ции распределения f(p, q), к-рая характеризует плотность вероятности нахождения точки, изображающей состояние системы, в элементе фазового пространства вблизи точки с координатами р, q. В квантовой механике вместо фазового объема используют понятие дискретного энергетич. спектра системы конечного объема, т.к. состояние отдельной частицы определяется не импульсом и координатами, а волновой ф-цией, к-рой в стационарном динамич. состоянии системы соответствует энергетич. спектр квантовых состояний .

Функция распределения классич. системы f(p, q)характеризует плотность вероятности реализации данного микро состояния (р, q) в элементе объема dГ фазового пространства. Вероятность пребывания N частиц в бесконечно малом объеме фазового пространства равна:

где dГ N - элемент фазового объема системы в единицах h 3N , h-постоянная Планка; делитель N! учитывает тот факт, что перестановка тождеств. частиц не меняет состояния системы. Ф-ция распределения удовлетворяет условию нормировки т f(p, q)dГ N = 1, т.к. система достоверно находится в к.-л. состоянии. Для квантовых систем ф-ция распределения определяет вероятность w i , N нахождения системы из N частиц в квантовом состоянии , задаваемом набором квантовых чисел i , с энергией E i,N при условии нормировки

Среднее значение в момент времени т (т.е. по бесконечно малому интервалу времени от т до т + dт)любой физ. величины А(р, q), являющейся ф-цией координат и импульсов всех частиц системы, с помощью ф-ции распределения вычисляется по правилу (в т.ч. и для неравновесных процессов):

Интегрирование по координатам проводится по всему объему системы, а интегрирование по импульсам от - , до +, . Состояние термодинамич. равновесия системы следует рассматривать как предел т: , . Для равновесных состояний ф-ции распределения определяются без решения ур-ния движения составляющих систему частиц. Вид этих ф-ций (одинаковый для классич. и квантовых систем) был установлен Дж. Гиббсом (1901).

В микроканонич. ансамбле Гиббса все микросостояния с данной энергией Е равновероятны и ф-ция распределения для классич. систем имеет вид:

f(p,q) = Ad ,

где d -дельта-ф-ция Дирака, Н(р,q)-ф-ция Гамильтона, представляющая собой сумму кинетич. и потенц. энергий всех частиц; постоянная А определяется из условия нормировки ф-ции f(p, q). Для квантовых систем при точности задания квантового состояния , равной величине D E, в соответствии с соотношением неопределенностей между энергией и временем (между импульсом и координатой частицы), ф-ция w (E k) = -1 , если ЕE k E + D E, и w (E k) = 0, если E k < Е и E k > E + D E. Величина g(E, N, V)-т. наз. статистич. вес , равный числу квантовых состояний в энергетич. слое D E. Важное соотношение статистической термодинамики -связь энтропии системы со статистич. весом :

S(E, N, V) = klng(E, N, V), где k-Больцмана постоянная.

В канонич. ансамбле Гиббса вероятность нахождения системы в микросостоянии, определяемом координатами и импульсами всех N частиц или значениями E i,N , имеет вид: f(p, q) = exp {/kT}; w i,N = exp[(F - E i,N)/kT], где F-своб. энергия (энергия Гельмгольца), зависящая от значений V, Т, N:

F = -kTlnZ N ,

где Z N -статистич. сумма (в случае квантовой системы) или статистич. интеграл (в случае классич. системы), определяемые из условия нормировки ф-ций w i,N или f(p, q):


Z N = т exp[-H(р, q)/kT]dpdq/(N!h 3N)

(сумма по г берется по всем квантовым состояниям системы, а интегрирование проводится по всему фазовому пространству).

В большом канонич. ансамбле Гиббса ф-ция распределения f(p, q) и статистич. сумма X , определяемая из условия нормировки, имеют вид:

где W -термодинамич. потенциал, зависящий от переменных V, Т, m (суммирование ведется по всем целым положит. N ). В изобарно-изотермич. ансамбле Гиббса ф-ция распределения и статистич. сумма Q, определяемая из условия нормировки, имеют вид:

где G- энергия Гиббса системы (изобарно-изотермич. потенциал, своб. энтальпия).

Для вычисления термодинамич. ф-ции можно использовать любое распределение: они эквивалентны друг другу и соответствуют разным физ. условиям. Микроканонич. распределение Гиббса применяется гл. обр. в теоретич. исследованиях. Для решения конкретных задач рассматривают ансамбли, в к-рых есть обмен энергией со средой (канонич. и изобарно-изотермич.) или обмен энергией и частицами (большой канонич. ансамбль). Последний особенно удобен для изучения фазового и хим. равновесий . Статистич. суммы Z N и Q позволяют определить энергию Гельмгольца F, энергию Гиббса G, а также термодинамич. св-ва системы, получаемые дифференцированием статистич. суммы по соответствующим параметрам (в расчете на 1 моль в-ва): внутр. энергию U = RT 2 (9 lnZ N /9 T) V , энтальпию H = RT 2 (9 lnQ/9 T) P , энтропию S = RlnZ N + RT(9 lnZ N /9 T) V = = R ln Q + RT(9 ln Q/9 T) P , теплоемкость при постоянном объеме С V = 2RT(9 lnZ N /9 T) V + RT 2 (9 2 lnZ N /9 T 2) V , теплоемкость при постоянном давлении С Р = 2RT (9 lnZ N /9 T) P + + RT 2 (9 2 lnZ N /9 T 2) P и т.д. Соотв. все эти величины приобретают и статистич. смысл. Так, внутренняя энергия отождествляется со средней энергией системы, что позволяет рассматривать первое начало термодинамики как закон сохранения энергии при движении составляющих систему частиц; своб. энергия связана со статистич. суммой системы, энтропия-с числом микросостояний g в данном макросостоянии, или статистич. весом макросостояния, и, следовательно, с его вероятностью. Смысл энтропии как меры вероятности состояния сохраняется по отношению к произвольным (неравновесным) состояниям. В состоянии равновесия энтропия изолир. системы имеет максимально возможное значение при заданных внеш. условиях (Е, V, N), т. е. равновесное состояние является наиб. вероятным состоянием (с макс. статистич. весом). Поэтому переход из неравновесного состояния в равновесное есть процесс перехода из менее вероятных состояний в более вероятное. В этом заключается статистич. смысл закона возрастания энтропии , согласно к-рому энтропия замкнутой системы может только увеличиваться (см. Второе начало термодинамики). При т-ре абс. нуля любая система находится в осн. состоянии, в к-ром w 0 = 1 и S = 0. Это утверждение представляет собой третье начало термодинамики (см. Тепловая теорема). Существенно, что для однозначного определения энтропии нужно пользоваться квантовым описанием, т.к. в классич. статистике энтропия м. б. определена только с точностью до произвольного слагаемого.

Идеальные системы. Расчет статистич. сумм большинства систем представляет сложную задачу. Она существенно упрощается в случае газов , если вкладом потенц. энергии в полную энергию системы можно пренебречь. В этом случае полная ф-ция распределения f(p, q) для N частиц идеальной системы выражается через произведение одно-частичных ф-ций распределения f 1 (p, q):


Распределение частиц по микросостояниям зависит от их кинетич. энергии и от квантовых св-в системы, обусловлен ных тождественностью частиц. В квантовой механике все частицы разделяются на два класса: фермионы и бозоны. Тип статистики, к-рой подчиняются частицы, однозначно связан с их спином .

Статистика Ферми-Дирака описывает распределение в системе тождеств. частиц с полуцелым спином 1 / 2 , 3 / 2 ,... в единицах ђ = h/2p . Частица (или квазичастица), подчиняющаяся указанной статистике, наз. фермионом. К фер-мионам относятся электроны в атомах , металлах и полупроводниках , атомные ядра с нечетным атомным номером , атомы с нечетной разностью атомного номера и числа электронов , квазичастицы (напр., электроны и дырки в твердых телах) и т.д. Данная статистика была предложена Э.Ферми в 1926; в том же году П.Дирак выяснил ее квантовомех. смысл. Волновая ф-ция системы фермионов антисимметрична, т.е. меняет свой знак при перестановке координат и спинов любой пары тождеств. частиц. В каждом квантовом состоянии может находиться не более одной частицы (см. Паули принцип). Среднее число частиц n i идеального газа фермионов, находящихся в состоянии с энергией E i , определяется ф-цией распределения Ферми-Дирака:

n i ={1+exp[(E i -m )/kT]} -1 ,

где i-набор квантовых чисел, характеризующих состояние частицы.

Статистика Бозе-Эйнштейна описывает системы тождеств. частиц с нулевым или целочисленным спином (0, ђ, 2ђ, ...). Частица или квазичастица, подчиняющаяся указанной статистике, наз. бозоном. Данная статистика была предложена Ш. Бозе (1924) для фотонов и развита А. Эйнштейном (1924) применительно к молекулам идеального газа , рассматриваемым как составные частицы из четного числа фермионов, напр. атомные ядра с четным суммарным числом протонов и нейтронов (дейтрон, ядро 4 Не и т.д.). К бозонам относятся также фононы в твердом теле и жидком 4 Не, экситоны в полупроводниках и диэлектриках . Волновая ф-ция системы симметрична относительно перестановки любой пары тождеств. частиц. Числа заполнения квантовых состояний ничем не ограничены, т.е. в одном состоянии может находиться любое число частиц. Среднее число частиц n i идеального газа бозонов, находящихся в состоянии с энергией Е i описывается ф-цией распределения Бозе-Эйнштейна:

n i ={exp[(E i -m )/kT]-1} -1 .

Статистика Больцмана представляет собой частный случай квантовой статистики, когда можно пренебречь квантовыми эффектами (высокие т-ры). В ней рассматривается распределение частиц идеального газа по импульсам и координатам в фазовом пространстве одной частицы, а не в фазовом пространстве всех частиц, как в распределениях Гиббса. В качестве миним. единицы объема фазового пространства, имеющего шесть измерений (три координаты и три проекции импульса частицы), в соответствии с квантовомех. соотношением неопределенностей , нельзя выбрать объем меньший, чем h 3 . Среднее число частиц n i идеального газа , находящихся в состоянии с энергией E i , описывается ф-цией распределения Больцмана:

n i =exp[(m -E i)/kT].

Для частиц, к-рые движутся по законам классич. механики во внеш. потенц. поле U(r), статистически равновесная ф-ция распределения f 1 (p,r) по импульсам p и координатам r частиц идеального газа имеет вид: f 1 (p,r) = A ехр{ - [р 2 /2m + U(r)]/kT}. Здесь р 2 /2т-кинетич. энергия молекул массой ш, постоянная А определяется из условия нормировки. Данное выражение часто наз. распределением Максвелла-Больцмана, а распределением Больцмана наз. ф-цию

n(r) = n 0 ехр[-U(r)]/kT],

где n(r) = т f 1 (p, r)dp - плотность числа частиц в точке r (n 0 -плотность числа частиц в отсутствие внеш. поля). Распределение Больцмана описывает распределение моле кул в поле тяготения (барометрич. ф-ла), молекул и высокодисперсных частиц в поле центробежных сил, электронов в невырожденных полупроводниках , а также используется для расчета распределения ионов в разбавл. р-рах электролитов (в объеме и на границе с электродом) и т. п. При U(r) = 0 из распределения Максвелла - Больц-мана следует распределение Максвелла, описывающее распределение по скоростям частиц, находящихся в ста-тистич. равновесии (Дж. Максвелл, 1859). Согласно этому распределению, вероятное число молекул в единице объема компоненты скоростей к-рых лежат в интервалах от u i до u i + du i (i = x, у, z), определяется ф-цией:

Распределение Максвелла не зависит от взаимод. между Частицами и справедливо не только для газов , но и для жидкостей (если для них возможно классич. описание), а также для броуновских частиц, взвешенных в жидкости и газе . Его используют для подсчета числа столкновений молекул газа между собой в ходе хим. р-ции и с атомами пов-сти.

Сумма по состояниям молекулы . Статистич. сумма идеального газа в канонич. ансамбле Гиббса выражается через сумму по состояниям одной молекулы Q 1:

где Е i - энергияi-го квантового уровня молекулы (i = О соответствует нулевому уровню молекулы), g i -статистич. вес i-го уровня. В общем случае отдельные виды движения электронов , атомов и групп атомов в молекуле , а также движение молекулы как целого взаимосвязаны, однако приближенно их можно рассматривать как независимые. Тогда сумма по состояниям молекулы м. б. представлена в виде произведения отдельных составляющих, связанных с по-ступат. движением (Q пост) и с внутримол. движениями (Q вн):

Q 1 = Q пост ·Q вн, Q пост = l (V/N),

где l = (2p mkТ/h 2) 3/2 . Для атомов Q вн представляет собой сумму по электронным и ядерным состояниям атома ; для молекул Q вн - сумма по электронным, ядерным, колебат. и вращат. состояниям. В области т-р от 10 до 10 3 К обычно используют приближенное описание, в к-ром каждый из указанных типов движения рассматривается независимо: Q вн = Q эл ·Q яд ·Q вращ ·Q кол /g , где g - число симметрии , равное числу тождество. конфигураций, возникающих при вращении молекулы , состоящей из одинаковых атомов или групп атомов .

Сумма по состояниям электронного движения Q эл равна статистич. весу Р т осн. электронного состояния молекулы . Во мн. случаях осн. уровень невырожден и отделен от ближайшего возбужденного уровня значит. энергией: (Р т = 1). Однако в ряде случаев, напр. для молекулы О 2 , Р т = з, в осн. состоянии момент кол-ва движения молекулы отличен от нуля и имеет место вырождение энергетических уровней , а энергии возбужденных состояний м. б. достаточно низкими. Сумма по состояниям Q яд, обусловленная вырождением ядерных спинов , равна:

где s i -спин ядра атома i, произведение беретсяпо всем атомам молекулы . Сумма по состояниям колебат. движения молекулы где v i -частоты нор мальных колебаний, n-число атомов в молекуле . Сумму по состояниям вращат. движений многоатомной молекулы с большими моментами инерции можно рассматривать классически [высокотемпературное приближение, T/q i 1, где q i = h 2 /8p 2 kI i (i = x, у, z), I t -главный момент инерции вращения вокруг оси i]: Q вр = (p T 3 /q x q y q z) 1/2 . Для линейных молекул с моментом инерции I статистич. сумма Q вр = T/q , где q = h 2 /8p 2 *kI.

При расчетах при т-рах выше 10 3 К необходимо учитывать ангармонизм колебаний атомов , эффекты взаимод. колебат. и вращат. степеней свободы (см. Нежесткие молекулы), а также мультиплетности электронных состояний, заселенности возбужденных уровней и т. д. При низких т-рах (ниже 10 К) необходимо учитывать квантовые эффекты (особенно для двухатомных молекул). Так, вращат. движение гетеро-ядерной молекулы АВ описывается по ф-ле:

l-номервращат. состояния, а для гомоядерных молекул А 2 (особенно для молекул водорода Н 2 , дейтерия D 2 , трития Т 2) ядерные и вращат. степени свободы взаимод. друг с другом: Q яд. вращ . Q яд ·Q вращ.

Знание суммы по состояниям молекулы позволяет рассчитать термодинамич. св-ва идеального газа и смеси идеальных газов , в т.ч. константы хим. равновесия , равновесную степень ионизации и т.п. Важное значение в теории абс. скоростей р-ций имеет возможность расчета константы равновесия процесса образования активир. комплекса (переходного состояния), к-рое представляется как модифицир. частица, одна из колебат. степеней свободы к-рой заменена степенью свободы поступат. движения.

Неидеальные системы. В реальных газах молекулы взаимод. друг с другом. В этом случае сумма по состояниям ансамбля не сводится к произведению сумм по состояниям отдельных молекул . Если считать, что межмол. взаимод. не влияют на внутр. состояния молекул , статистич. сумма системы в классич. приближении для газа , состоящего из N тождеств. частиц, имеет вид:

где

Здесь <2 N -конфигурац. интеграл, учитывающий взаимод. молекул . Наиб, часто потенц. энергия молекул U рассматривается в виде суммы парных потенциалов: U = =где U(r ij)- потенциал центр. сил, зависящий от расстояния r ij между молекулами i и j. Учитывают также многочастичные вклады в потенц. энергию, эффекты ориентации молекул и т.д. Необходимость расчета конфигурац. интеграла возникает при рассмотрении любых конденсир. фаз и границ раздела фаз. Точное решение задачи мн. тел практически невозможно, поэтому для расчета статистич. суммы и всех термодинамич. св-в, получаемых из статистич. суммы дифференцированием по соответствующим параметрам, используют разл. приближенные методы.

Согласно т. наз. методу групповых разложений, состояние системы рассматривается в виде совокупности комплексов (групп), состоящих из разного числа молекул , и конфигурац. интеграл распадается на совокупность групповых интегралов. Такой подход позволяет представить любую термодинамич. ф-цию реального газа в виде ряда по степеням плотности. Наиб. важное соотношение такого рода - вириальное ур-ние состояния.

Для теоретич. описания св-в плотных газов , жидкостей и твердых тел , р-ров неэлектролитов и электролитов и границ раздела в этих системах более удобным, чем прямой расчет статистич. суммы, является метод n-частичных ф-ций распределения. В нем вместо подсчета статистич. веса каждого состояния с фиксир. энергией используют соотношения между ф-циями распределения f n , к-рые характеризуют вероятность нахождения частиц одновременно в точках пространства с координатами r 1 ,..., r n ; при n = N f N = b т f(p, r)dp (здесь и ниже q i = r i). Одночастичная ф-ция f 1 (r 1) (n = 1) характеризует распределение плотности в-ва. Для твердого тела это периодич. ф-ция с максимумами в узлах кристаллич. структуры; для газов или жидкостей в отсутствие внеш. поля это постоянная величина, равная макроскопич. плотности в-ва р. Двухчастичная ф-ция распределения (п = 2) характеризует вероятность нахождения двух частиц в точках 1 и 2, она определяет т. наз. корреляционную ф-цию g(|r 1 - r 2 |) = f 2 (r 1 , r 2)/r 2 , характеризующую взаимную корреляцию в распределении частиц. Соответствующую опытную информацию дает рентгеновский структурный анализ .

Ф-ции распределения размерности n и n + 1 связаны бесконечной системой зацепляющихся интегродифференц. ур-ний Боголюбова-Борна-Грина-Кирквуда-Ивона, решение к-рых чрезвычайно сложно, поэтому эффекты корреляции между частицами учитывают введением разл. аппроксимаций, к-рые определяют, каким бразом ф-ция f n выражается через ф-ции меньшей размерности. Соотв. разработано неск. приближенных методов расчета ф-ций f n , а через них-всех термодинамич. характеристик рассматриваемой системы. Наиб. применение имеют приближения Перкус-Иевика и гиперцепное.

Решеточные модели конденсир. состояния нашли широкое применение при термодинамич. рассмотрении практически всех физ.-хим. задач. Весь объем системы разбивается на локальные области с характерным размером порядка размера молекулы u 0 . В общем случае в разных моделях размер локальной области м. б. как больше, так и меньше u 0 ; в большинстве случаев они совпадают. Переход к дискретному распределению молекул в пространстве существенно упрощает подсчет разл. конфигураций молекул . Решеточные модели учитывают взаимод. молекул друг с другом; энергия взаимод. описывается энергетич. параметрами. В ряде случаев решеточные модели допускают точные решения, что позволяет оценить характер используемых приближений. С их помощью возможно рассмотрение многочастичных и специфич. взаимод., ориентац. эффектов и т. п. Решеточные модели являются основными при изучении и проведении прикладных расчетов растворов неэлектролитов и полимеров , фазовых переходов , критических явлений , сильно неоднородных систем.

Численные методы определения термодинамич. св-в приобретают все большее значение по мере развития вычислит. техники. В методе Монте-Карло осуществляется прямой расчет многомерных интегралов, что позволяет непосредственно получить статистич. среднее наблюдаемой величины А(r1.....r N) по любому из статистич. ансамблей (напр., А - энергия системы). Так, в канонич. ансамбле термодинамич. среднее имеет вид:

Данный метод применим практически ко всем системам; получаемые с его помощью средние величины для ограниченных объемов (N = 10 2 -10 5) служат хорошим приближением для описания макроскопич. объектов и могут рассматриваться как точные результаты.

В методе мол. динамики эволюция состояния системы рассматривается с помощью численного интегрирования ур-ний Ньютона для движения каждой частицы (N = = 10 2 -10 5) при заданных потенциалах межчастичного взаимодействия. Равновесные характеристики системы получаются при усреднении по фазовым траекториям (по скоростям и координатам) на больших временах, после установления максвелловского распределения частиц по скоростям (т. наз. период термализации).

Ограничения в использовании численных методов в осн. определяются возможностями ЭВМ. Спец. вычислит. приемы позволяют обходить сложности, связанные с тем, что рассматривается не реальная система, а небольшой объем; это особенно важно при учете дальнодействующих потенциалов взаимод., анализе фазовых переходов и т.п.

Физическая кинетика - раздел статистич. физики, к-рый дает обоснование соотношениям термодинамики необратимых процессов , описывающим перенос энергии, импульса и массы, а также влияние на эти процессы внеш. полей. Кинетич. коэффициенты-макроскопич. характеристики сплошной среды, определяющие зависимости потоков физ. величин (теплоты, импульса, массы компонентов и др.) от вызывающих эти потоки градиентов т-ры, концентрации , гидродинамич. скорости и др. Необходимо различать коэффициенты Онсагера, входящие в ур-ния, связывающие потоки с термодинамич. силами (термодинамич. ур-ния движения), и коэффициенты переноса (диффузии , теплопроводности , вязкости и т. п.), входящие в ур-ния переноса. Первые м. б. выражены через вторые с помощью соотношений между макроскопич. характеристиками системы, поэтому в дальнейшем будут рассматриваться лишь коэф. переноса.

Для расчета макроскопич. коэф. переноса необходимо провести усреднение по вероятностям реализаций элементарных актов переноса с помощью неравновесной ф-ции распределения. Главная сложность заключается в том, что аналит. вид ф-ции распределения f(р, q, т) (т-время) неизвестен (в отличие от равновесного состояния системы, к-рое описывается с помощью ф-ций распределения Гиббса, получаемых при т : , ). Рассматривают n-частичные ф-ции распределения f n (r , q, т), к-рые получают из ф-ций f(р, q, т) усреднением по координатам и импульсам остальных (N - п) частиц:

Для них м. б. составлена система ур-ний, позволяющая описать произвольные неравновесные состояния. Решение этой системы ур-ний очень сложно. Как правило, в кинетич. теории газов и газообразных квазичастиц в твердом теле (фермионов и бозонов) используется лишь ур-ние для одно-частичной ф-ции распределения f 1 . В предположении об отсутствии корреляции между состояниями любых частиц (гипотеза мол. хаоса) получено т. наз. кинетич. ур-ние БоЛьцмана (Л. Больцман, 1872). Это ур-ние учитывает изменение ф-ции распределения частиц под действием внеш. силы F(r, т) и парных столкновений между частицами:

где f 1 (u, r, т) и -ф-ции распределения частиц до столкновения, f " 1 (u", r, т) и-ф-ции распределения после столкновения; u и-скорости частиц до столкновения, u" и -скорости тех же частиц после столкновения, и = |u -|-модуль относит. скорости сталкивающихся частиц, q - угол между относит. скоростью u - сталкивающихся частиц и линией, соединяющей их центры, s (u,q )dW -дифференц. эффективное сечение рассеяния частиц на телесный угол dW в лаб. системе координат, зависящее от закона взаимод. частиц. Для модели молекул в виде упругих жестких сфер, имеющих радиус R, принимается s = 4R 2 cosq . В рамках классич. механики дифференц. сечение выражается через параметры столкновения b и e (соотв. прицельное расстояние и азимутальный угол линии центров): s dW = bdbde , а молекулы рассматриваются как центры сил с потенциалом, зависящим от расстояния. Для квантовых газов выражение для дифференц. эффективного сечения получают на основе квантовой механики , с учетом влияния эффектов симметрии на вероятность столкновения.

Если система находится в статистич. равновесии , интеграл столкновений Stf равен нулю и решением кинетич. ур-ния Больцмана будет распределение Максвелла. Для неравновесных состояний решения кинетич. уравнения Больцмана обычно ищут в виде разложения в ряд ф-ции f 1 (u, r, т) по малым параметрам относительно ф-ции распределения Максвелла. В простейшем (релаксационном) приближении интеграл столкновений аппроксимируется как Stf газах с внутр. степенями свободы симметрии теплопроводность жидкости , можно использовать локально равновесную одночастичную ф-цию распределения с т-рой, хим. потенциалами и гидродинамич. скоростью, к-рые соответствуют рассматриваемому малому объему жидкости . К ней можно найти поправку, пропорциональную градиентам т-ры, гидродинамич. скорости и хим. потенциалам компонентов, и вычислить потоки импульсов, энергии и в-ва, а также обосновать ур-ния Навье-Стокса, теплопроводности и диффузии . В этом случае коэф. переноса оказываются пропорциональными пространственно-временным корреляц. ф-циям потоков энергии, импульса и в-ва каждого компонента.

Для описания процессов переноса в-ва в твердых телах и на границах раздела с твердым телом широко используется решеточная модель конденсир. фазы. Эволюция состояния системы описывается осн. кинетич. ур-нием (master equation) относительно ф-ции распределения P(q, т):

где P(q,т)= т f(p,q,т)du- ф-ция распределения, усредненная по импульсам (скоростям) всех N частиц, описывающая распределение частиц по узлам решеточной структуры (их число равно N y , N < N y), q- номер узла или его координата. В модели "решеточного газа " частица может находиться в узле (узел занят) или отсутствовать (узел свободен); W(q : q")-вероятность перехода системы в единицу времени из состояния q, описываемого полным набором координат частиц, в др. состояние q". Первая сумма описывает вклад всех процессов, в к-рых осуществляется переход в данное состояние q, вторая сумма-выход из этого состояния. В случае равновесного распределения частиц (т : , ) P(q) = exp[-H(q)/kT]/Q, где Q-статистич. сумма, H(q)-энергия системы в состоянии q. Вероятности перехода удовлетворяют детального равновесия принципу: W(q": q)exp[-H(q")/kT] = W(q : q")ехр[-H(q)/kТ]. На базе ур-ний для функций P(q,т) строят кинетич. ур-ния для n-частичных ф-ций распределения, к-рые получают путем усреднения по расположениям всех остальных (N - п) частиц. Для малых h кинетич. ур-ния м. б. решены аналитически или численно и с их помощью м. б. получены коэф. диффузии , самодиффузии, сдвиговой вязкости , подвижности и т.п. Такой подход применим к процессам переноса в-ва в моноатомных кристаллах релаксации системы к равновесному состоянию позволяет рассмотреть разл. переходные процессы при исследовании кинетики фазовых превращений, роста кристаллов , кинетики поверхностных р-ций и т.д. и определить их динамич. характеристики, в т. ч. и коэф. переноса.

Для расчета коэф. переноса в газообразных, жидких и твердых фазах, а также на границах раздела фаз активно используются разнообразные варианты метода мол. динамики, к-рый позволяет детально проследить за эволюцией системы от времен ~10 -15 с до ~10 -10 с (на временах порядка 10 -10 - 10 -9 с и более используются т. наз. ур-ния Ланжевена, это ур-ния Ньютона, содержащие в правой части стохастич. слагаемое).

Для систем с хим. р-циями на характер распределения частиц большое влияние оказывает соотношение между характерными временами переноса реагентов и их хим. превращения. Если скорость хим. превращения мала, распределение частиц не сильно отличается от случая, когда р-ция отсутствует. Если скорость р-ции велика, ее влияние на характер распределения частиц велико и использовать средние концентрации частиц (т.е. ф-ции распределения с n = 1), как это делается при использовании закона действующих масс , нельзя. Необходимо более детально описывать распределение реагентов с помощью ф-ций распределения f n с n > 1. Важное значение при описании реакц. потоков частиц на пов-сти и скоростей диффузионно-контролируемых реакций имеют граничные условия (см. Макрокинетика)., 2 изд., М., 1982; Берклеевский курс физики, пер. с англ., 3 изд., т. 5-Рейф Ф., Статистическая физика, М., 1986; Товбин Ю.К., Теория физико-химических процессов на границе газ-твердое тело, М., 1990. Ю.К. Товбин.

Молекулярная физика,

Термодинамика,

Статистическая физика,


три положения
1. вещество состоит из частиц;
2.
3.

статистического метода усредненными

термодинамический метод

Начала термодинамики

Первое начало термодинамики

δQ = δA + dU , где dU Q и δA

Второе начало термодинамики

1 - Постулат Клаузиуса.

2 - Постулат Кельвина.

Приращение энтропии (

Нулевое начало термодинамики (общее начало термодинамики )

Если система A B C , то система A находится в равновесии с C

Элементы физической кинетики. Явление переноса в термодинамически неравновесных системах. Общее уравнение явлений переноса в газах и его обоснование согласно МКТ. Зависимость коэффициентов переноса от давления и температуры.

Физи́ческая кине́тика (др.-греч. κίνησις - движение) - микроскопическая теория процессов в неравновесных средах. В кинетике методами квантовой или классическойстатистической физики

Изучают процессы переноса энергии, импульса, заряда и вещества в различных физических системах (газах, плазме, жидкостях, твёрдых телах) и влияние на них внешних полей.

В термодинамически неравновесных системах возникают особые необратимые процес­сы, называемые явлениями переноса , в результате которых происходит пространственный перенос энергии, массы, импульса. К явлениям переноса относятся теплопроводность (обусловлена переносом энергии), диффузия (обусловлена переносом массы ) и внутреннее трение (обусловлено переносом импульса).

1. Теплопроводность. Если в одной области газа средняя кинетическая энергия молекул больше,чем в другой, то с течением времени вследствие постоянных сто­лкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. е., иными словами, выравнивание температур.

Перенос энергии в форме теплоты подчиняетсязакону Фурье:

где j E -плотность теплового потока - величина, определяемая энергией, переносимой в форме теплоты оси х , l - теплопроводность , - градиент температуры, равный скорости изменения температуры на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что при теплопроводности энергия переносится в направлении убывания температуры (поэтому знаки j E и – противоположны).

2. Диффузия. Явление диффузии заключается в том, что происходит самопроиз­вольное проникновение и перемешивание частиц двух соприкасающихся газов, жидкостей и даже твердых тел; диффузия сводится к обмену масс частиц этих тел, возникает и продолжается, пока существует градиент плотности. Во время становления молекулярно-кинетической теории по вопросу диффузии возникли противоречия. Так как молекулы движутся с огромными скоростями, диффузия должна происходить очень быстро. Если же открыть в комнате сосуд с пахучим веществом, то запах распространяется довольно медленно. Однако противоречия здесь нет. Молекулы при атмосферном давлении обладают малой длиной свободного пробега и, сталкиваясь с другими молекулами, в основном «стоят» на месте.

Явление диффузии для химически однородного газа подчиняется закону Фука :

где j m -плотность потока массы - величина, определяемая массой вещества, диффундирующего в единицу времени через единичную площадку,перпендикулярную оси х, D - диффузия (коэффициент диффузии), dr/ dx - градиент плотности, равный скорости изменения плотности на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что перенос массы происходит в направлении убывания плотности (поэтому знаки j m и dr/ dx противоположны).

3. Внутреннее трение (вязкость ). Механизм возникновения внутреннего трения меж­ду параллельными слоями газа (жидкости), движущимися с различными скоростями, заключается в том, что из-за хаотического теплового движения происходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее, уменьшается, движущегося медленнее - увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее.

Сила внутреннего трения между двумя слоями газа (жидкости) подчиняется закону Ньютона :

где h - динамическая вязкость (вязкость), dv/ dx - градиент скорости, показывающий быстроту изменения скорости в направлении х, перпендикулярном направлению дви­жения слоев, S - площадь, на которую действует сила F.

Взаимодействие двух слоев согласно второму закону Ньютона можно рассматри­вать как процесс, при котором от одного слоя к другому в единицу времени передается импульс, по модулю равный действующей силе. Тогда данное выражение можно представить в виде

где j p - плотность потока импульса - величина, определяемая полным импульсом, переносимым в единицу времени в положительном направлении оси х через единичную площадку, перпендикулярную оси х, - градиент скорости. Знак минус указывает, что импульс переносится в направлении убывания скорости.

Коэффициент диффузии растет с повышением температуры:

С повышением температуры, коэффициент теплопроводности тоже увеличивается:

Температурная зависимость коэффициента вязкости аналогична зависимости для коэффициента теплопроводности:

Первый закон (первое начало) термодинамики (закон сохранения энергии в тепловых процессах). Применение первого начала термодинамики к изопроцессам в газах. Адиабатический процесс. Уравнение Пуассона. Политропный процесс.

Первое начало термодинамики - один из трёх основных законов термодинамики, представляет собой закон сохранения энергии длятермодинамических систем

.

Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе, то есть, оно зависит только от начального и конечного состояния системы и не зависит от способа, которым осуществляется этот переход. Иными словами, внутренняя энергия является функцией состояния . В циклическом процессе внутренняя энергия не изменяется.

δQ = δA + dU , где dU есть полный дифференциал внутренней энергии системы, а δQ и δA есть элементарное количество теплоты, переданное системе, и элементарная работа, совершенная системой соответственно.

Первое начало термодинамики:

§ при изобарном процессе

§ при изохорном процессе (A = 0)

§ при изотермическом процессе (ΔU = 0)

Здесь - масса газа, - молярная масса газа, - молярная теплоёмкость при постоянном объёме, - давление, объём и температура газа соответственно, причём последнее равенство верно только для идеального газа.

Твердое состояние вещества. Состояние, характеризующееся способностью сохранять объём и форму. Атомы твёрдого тела совершают лишь небольшие колебания вокруг состояния равновесия. Присутствует как дальний, так и ближний порядок.

Д. имеет место в газах, жидкостях и твёрдых телах, причём диффундировать могут как находящиеся в них частицы посторонних веществ, так и собственные частицы.Д. крупных частиц, взвешенных в газе или жидкости осуществляется благодаря их броуновскому движению. Наиболее быстро Д. происходит в газах, медленнее в жидкостях, ещё медленнее в твёрдых телах, что обусловлено характером теплового движения частиц в этих средах.

Твердое тело. Состояние, характеризующееся способностью сохранять объём и форму. Атомы твёрдого тела совершают лишь небольшие колебания вокруг состояния равновесия. Присутствует как дальний, так и ближний порядок.

Жидкость. Состояние вещества, при котором оно обладает малой сжимаемостью, то есть хорошо сохраняет объём, однако не способно сохранять форму. Жидкость легко принимает форму сосуда, в который она помещена. Атомы или молекулы жидкости совершают колебания вблизи состояния равновесия, запертые другими атомами, и часто перескакивают на другие свободные места. Присутствует только ближний порядок.

Газ. Состояние, характеризующееся хорошей сжимаемостью, отсутствием способности сохранять как объём, так и форму. Газ стремится занять весь объём, ему предоставленный. Атомы или молекулы газа ведут себя относительно свободно, расстояния между ними гораздо больше их размеров.

Плазма. Часто причисляемая к агрегатным состояниям вещества плазма отличается от газа большой степенью ионизации атомов. Большая частьбарионного вещества (по массе ок. 99,9 %) во Вселенной находится в состоянии плазмы.

Явление поверхностного натяжения. Коэффициент поверхностного натяжения. Гидрофильные и гидрофобные поверхности. Условие рвновесия капли жидкости на поверхности твердого тела (принцип наименьшей энергии). Поверхностно-активные вещества (ПАВ) и их применение.

Пове́рхностное натяже́ние - термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объем системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.

Поверхностное натяжение имеет двойной физический смысл - энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение - это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение - это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости

Коэффициент поверхностного натяжения - работа, необходимая для изотермического увеличения площади поверхности жидкости на 1 кв.м.

Коэффициент поверхностного натяжения:
- уменьшается с повышением температуры;
- равен нулю в критической точке;
- зависит от наличия примесей в жидкости.

Гидрофобность (от др.-греч. ὕδωρ - вода и φόβος - боязнь, страх) - это физическое свойство молекулы, которая «стремится» избежать контакта с водой. Сама молекула в этом случае называется гидрофобной.

Гидрофильность (от др.-греч. ὕδωρ - вода и φιλία - любовь) - характеристика интенсивности молекулярного взаимодействия поверхности тел с водой. Наряду сгидрофобностью относится не только к телам, у которых оно является свойством поверхности.

Рассмотрим теперь явления, происходящие с каплей жидкости, помещенной на поверхность твердого тела. В этом случае имеются три границы раздела между фазами: газ-жидкость, жидкость-твердое тело и газ-твердое тело. Поведение капли жидкости будет определяться значениями поверхностного натяжения (удельными величинами свободной поверхностной энергии) на указанных границах раздела. Сила поверхностного натяжения на границе раздела жидкости и газа будет стремиться придать капле сферическую форму. Это произойдет в том случае, если поверхностное натяжение на границе раздела жидкости и твердого тела будет больше поверхностного натяжения на границе раздела газа и твердого тела. В этом случае процесс стягивания жидкой капли в сферу приводит к уменьшению площади поверхности границы раздела жидкость-твердое тело при одновременном увеличении площади поверхности границы раздела газ-жидкость. Тогда наблюдается несмачивание поверхности твердого тела жидкостью. Форма капли будет определяться равнодействующей сил поверхностного натяжения и силы тяжести. Если капля большая, то она будет растекаться по поверхности, а если маленькая - стремиться к шарообразной форме.

Пове́рхностно-акти́вные вещества́ (ПАВ ) - химические соединения, которые, концентрируясь на поверхности раздела фаз, вызывают снижение поверхностного натяжения.

Области применения

Моющие средства. Основное применение ПАВ - в качестве активного компонента моющих и чистящих средств (в том числе, применяемых для дезактивации), мыла, для ухода за помещениями, посудой, одеждой, вещами, автомобилями и пр.

Косметика. Основное использование ПАВ в косметике - шампуни, где содержание ПАВ может достигать десятков процентов от общего объёма.

Текстильная промышленность. ПАВ используются в основном для снятия статического электричества на волокнах синтетической ткани.

Кожевенная промышленность. Защита кожаных изделий от лёгких повреждений и слипания.

Лакокрасочная промышленность. ПАВ используются для снижения поверхностного натяжения, что обеспечивает лёгкое проникновение красочного материала в маленькие углубления на обрабатываемой поверхности и их заполнение с вытеснением при этом оттуда другого вещества (например, воды).

Бумажная промышленность. ПАВ используются для разделения чернил и варёной целлюлозы при переработке использованной бумаги.

Металлургия. Эмульсии ПАВ используются для смазки прокатных станов. Снижают трение. Выдерживают высокие температуры, при которых сгорает масло.

Защита растений. ПАВ широко используются в агрономии и сельском хозяйстве для образования эмульсий. Используются для повышения эффективности транспортировки питательных компонентов к растениям через мембранные стенки.

Пищевая промышленность. ПАВ в виде эмульгаторов (например лецитина) добавляют для улучшения вкусовых качеств.

Нефтедобыча. ПАВ применяются для гидрофобизации призабойной зоны пласта (ПЗП) с целью увеличения нефтеотдачи.

Строительство. ПАВ, называемые пластификаторами, добавляют к цементно-песчаным смесям и бетонам для уменьшения их водопотребности при сохранении подвижности. Это увеличивает конечную прочность (марку) затвердевшего материала, его плотность, морозостойкость, водонепроницаемость.

Медицина. Катионные и анионные ПАВ применяют в хирургии в качестве антисептиков.

Капиллярные явления, физические явления, обусловленные действием поверхностного натяжения на границе раздела несмешивающихся сред. К К. я. относят обычно явления в жидких средах, вызванные искривлением их поверхности, граничащей с др. жидкостью, газом или собственным паром.

Смачивание, явление, возникающее при соприкосновении жидкости с поверхностью твёрдого тела или другие жидкости. Оно выражается, в частности, в растекании жидкости по твёрдой поверхности, находящейся в контакте с газом (паром) или другой жидкостью, пропитывании пористых тел и порошков, искривлении поверхности жидкости у поверхности твёрдого тела.

Формула Лапласа

Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Этим объясняется существование мыльных пузырей: плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давленияплёнки . Добавочное давление в точке поверхности зависит от средней кривизны в этой точке и даётся формулой Лапласа :

Здесь R 1,2 - радиусы главных кривизн в точке. Они имеют одинаковый знак, если соответствующие центры кривизны лежат по одну сторону от касательной плоскости в точке, и разный знак - если по разную cторону. Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому

R 1 = R 2 = R

Для случая поверхности кругового цилиндра радиуса R имеем

Обратите внимание, что Δp должно быть непрерывной функцией на поверхности плёнки, так что выбор «положительной» стороны плёнки в одной точке локально однозначно задаёт положительную сторону поверхности в достаточно близких её точках.

Из формулы Лапласа следует, что свободная мыльная плёнка, натянутая на рамку произвольной формы и не образующая пузырей, будет иметь среднюю кривизну, равную 0.

Предмет молекулярной физики и термодинамики. Статистическая физика и термодинамика. Основные положения МКТгазов. Термодинамический и статистический методы. Три начала термодинамики.

Молекулярная физика, раздел физики, в котором изучаются физические свойства тел в различных агрегатных состояниях на основе рассмотрения их микроскопического (молекулярного) строения.

Термодинамика, наука о наиболее общих свойствах макроскопических систем, находящихся в состоянии термодинамического равновесия, и о процессах перехода между этими состояниями.

Статистическая физика, раздел физики, задача которого - выразить свойства макроскопических тел, т. е. систем, состоящих из очень большого числа одинаковых частиц (молекул, атомов, электронов и т.д.), через свойства этих частиц и взаимодействие между ними.

Молекулярно-кинетической теорией называется учение, которое объясняет строение и свойства тел движением и взаимодействием атомов, молекул и ионов, из которых состоят тела.
В основе МКТ строения вещества лежат три положения , каждое из которых доказано с помощью наблюдений и опытов (броуновское движение, диффузия и др.):
1. вещество состоит из частиц;
2. частицы хаотически движутся;
3. частицы взаимодействуют друг с другом.
Цель молекулярно-кинетической теории - объяснение свойств макроскопических тел и тепловых процессов, протекающих в них, на основе представлений о том, что все тела состоят из отдельных, беспорядочно движущихся частиц.

Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Законы поведения огромного числа молекул, являясь статистическими закономерностями, изучаются с помощью статистического метода . Этот метод основан на том, что свойства макроскопической системы в конечном счете определяются свойствами частиц системы, особенностями их движения и усредненными значениями динамических характеристик этих частиц (скорости, энергии и т. д.). Например, температура тела определяется скоростью хаотического движения его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, то она может быть выражена только через среднее значение скорости движения молекул.

Термодинамика не рассматривает микропроцессы, которые лежат в основе этих превращений. Этим термодинамический метод отличается от статистического. Термодинамика базируется на двух началах фундаментальных законах, установленных в результате обобщения опытных данных.

Начала термодинамики - совокупность постулатов, лежащих в основе термодинамики. Эти положения были установлены в результате научных исследований и были доказаны экспериментально. В качестве постулатов они принимаются для того, чтобы термодинамику можно было построить аксиоматически.

Необходимость начал термодинамики связана с тем, что термодинамика описывает макроскопические параметры систем без конкретных предположений относительно их микроскопического устройства. Вопросами внутреннего устройства занимается статистическая физика.

Начала термодинамики независимы, то есть ни одно из них не может быть выведено из других начал.

Первое начало термодинамики

Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил

Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе и не зависит от способа, которым осуществляется этот переход.

δQ = δA + dU , где dU есть полный дифференциал внутренней энергии системы, а δQ и δA есть элементарное количество теплоты, переданное системе, и элементарная работа, совершенная системой соответственно.

Второе начало термодинамики

Второй закон термодинамики исключает возможность создания вечного двигателя второго рода.

1 - Постулат Клаузиуса. Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему

2 - Постулат Кельвина. Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара

Третье начало термодинамики может быть сформулировано так:

Приращение энтропии (как на меру беспорядка в системе) при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система.

Нулевое начало термодинамики (общее начало термодинамики )

Физический принцип, утверждающий, что вне зависимости от начального состояния изолированной системы в конце концов в ней установится термодинамическое равновесие, а также что все части системы при достижении термодинамического равновесия будут иметь одинаковую температуру. Тем самым нулевое начало фактически вводит и определяет понятие температуры. Нулевому началу можно придать чуть более строгую форму:

Если система A находится в термодинамическом равновесии с системой B , а та, в свою очередь, с системой C , то система A находится в равновесии с C . При этом их температуры равны.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении